With cedram.org
  version française
Search for an article

Table of contents for this issue

Masoomeh Taghipoor; Guy Barles; Christine Georgelin; Jean-René Licois; Philippe Lescoat
Mathematical Homogenization in the Modelling of Digestion in the Small Intestine
MathS In Action, 6 no. 1 (2013), p. 1-19, doi: 10.5802/msia.7
Article PDF
Class. Math.: 92A09, 35B27, 34C29, 49L25
Keywords: Digestion in the small intestine, peristalsis, intestinal villi, homogenization, viscosity solutions

Résumé - Abstract

Digestion in the small intestine is the result of complex mechanical and biological phenomena which can be modelled at different scales. In a previous article, we introduced a system of ordinary differential equations for describing the transport and degradation-absorption processes during the digestion. The present article sustains this simplified model by showing that it can be seen as a macroscopic version of more realistic models including biological phenomena at lower scales. In other words, our simplified model can be considered as a limit of more realistic ones by averaging-homogenization methods on biological processes representation.


[1] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications (Berlin) [Mathematics & Applications] 17, Springer-Verlag, Paris, 1994  MR 1613876 |  Zbl 0819.35002
[2] G. Barles, “Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications”, J. Differential Equations 154 (1999) no. 1, p. 191-224 Article |  MR 1685618 |  Zbl 0924.35051
[3] G. Barles, F. Da Lio, P.-L. Lions & P. E. Souganidis, “Ergodic problems and periodic homogenization for fully nonlinear equations in half-space type domains with Neumann boundary conditions”, Indiana Univ. Math. J. 57 (2008) no. 5, p. 2355-2375 Article |  MR 2463972 |  Zbl 1173.35013
[4] M. G. Crandall, H. Ishii & P.-L. Lions, “User’s guide to viscosity solutions of second order partial differential equations”, Bull. Amer. Math. Soc. (N.S.) 27 (1992) no. 1, p. 1-67 Article |  MR 1118699 |  Zbl 0755.35015
[5] L. C. Evans, “The perturbed test function method for viscosity solutions of nonlinear PDE”, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) no. 3-4, p. 359-375 Article |  MR 1007533 |  Zbl 0679.35001
[6] L. C. Evans, “Periodic homogenisation of certain fully nonlinear partial differential equations”, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992) no. 3-4, p. 245-265 Article |  MR 1159184 |  Zbl 0796.35011
[7] H. Ishii, “Perron’s method for Hamilton-Jacobi equations”, Duke Math. J. 55 (1987) no. 2, p. 369-384 Article |  MR 894587 |  Zbl 0697.35030
[8] J. Keener & J. Sneyd, Mathematical physiology. Vol. II: Systems physiology, Interdisciplinary Applied Mathematics 8/, Springer, New York, 2009 Article |  MR 2447179 |  Zbl pre05280967
[9] J. D. Logan, A. Joern & W. Wolesensky, “Location, time, and temperature dependence of digestion in simple animal tracts”, J. Theoret. Biol. 216 (2002) no. 1, p. 5-18 Article |  MR 1942206
[10] A. V. Mernone, J. N. Mazumdar & S. K. Lucas, “A mathematical study of peristaltic transport of a Casson fluid”, Math. Comput. Modelling 35 (2002) no. 7-8, p. 895-912 Article |  MR 1901295 |  Zbl 1022.76058
[11] R. Miftahof & N. Akhmadeev, “Dynamics of intestinal propulsion”, J. Theoret. Biol. 246 (2007) no. 2, p. 377-393 Article |  MR 2306905
[12] L. C. Piccinini, “Homogeneization problems for ordinary differential equations”, Rend. Circ. Mat. Palermo (2) 27 (1978) no. 1, p. 95-112 Article |  MR 542236 |  Zbl 0416.34019
[13] D. Randall, W. Burggren, K. French & R. Eckert, Eckert Animal Physiology: Mechanisms and Adaptations, W.H. Freeman & Company, 1997
[14] J. Rivest, J. F. Bernier & C. Pomar, “A dynamic model of protein digestion in the small intestine of pigs”, J Anim Sci 78 (2000) no. 2, p. 328-340
[15] M. Taghipoor, P. Lescoat, J.-R. Licois, Ch. Georgelin & G. Barles, “Mathematical modeling of transport and degradation of feedstuffs in the small intestine”, Journal of Theoretical Biology 294 (2012), p. 114 -121 Article
[16] K.E. Yamauchi, “Review of a histological intestinal approach to assessing the intestinal function in chickens and pigs”, Animal Science Journal 78 (2007), p. 356-370
[17] X. T. Zhao, M. A. McCamish, R. H. Miller, L. Wang & H. C. Lin, “Intestinal transit and absorption of soy protein in dogs depend on load and degree of protein hydrolysis.”, J Nutr 127 (1997) no. 12, p. 2350-2356