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Abstract

We describe microbial growth and production of value-added chemical compounds in a continuous biore-
actor through a dynamical system and we study the local stability of the equilibrium of interest by means of
the classical Routh–Hurwitz criterion. The mathematical model considers various biological and structural
parameters related to the bioprocess (concentration of substrate inflow, constants of the microchemical re-
actions, steady-state mass fractions of intracellular proteins, etc.) and thus, the stability condition is given
in terms of these parameters. This boils down to deciding the consistency of a system of polynomial in-
equalities over the reals, which is challenging to solve from an analytical perspective, and out of reach even
for traditional computational software designed to solve such problems. We show how to adapt classical
techniques for solving polynomial systems to cope with this problem within a few minutes by leveraging its
structural properties, thus completing the stability analysis of our model. The paper is accompanied by a
Maple worksheet available online.

1. Introduction

1.1. Biological context

The dynamical system analyzed in this paper is based on previous works [31, 32, 37], and it
represents a simplified version of a bioprocess used in scientific research and in the chemical and
pharmaceutical industries for the production of value-added chemical compounds. The model
is twofold. On one side, it considers a bacterial model representing the main cellular functions
involved in growth and chemical production: metabolism and production of proteins [9, 35, 36,
38]. On the other hand, it models a continuous bioprocess, a production scheme ocurring in a
bioreactor that allows steady-state operation for long periods of time, avoiding shutdown for
cleaning and maintenance [6]. Thus, through a multi-scale modelling approach, the biological
model aims to capture intracellular reactions, extracellular processes, and the interplay between
them [33, 34].

This work was partially supported by ANR project Maximic (ANR-17-CE40-0024-01), Inria IPL Cosy and Labex
SIGNALIFE (ANR-11-LABX-0028-01).
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The principle behind continuous processing is that the bacterial culture is supplied with a
continuous flow of fresh medium rich in nutrients, while waste products and microbial cells are
removed at the same volumetric flow rate. This creates a constant volume inside the bioreactor
and, provided the appropriate operating conditions are met, a steady-state production regime.
The outflow of compounds of interest excreted by bacteria is linear in the volumetric flow, so
the process yield can be improved through this operation parameter. However, if too large, it
can lead to washout: an undesired condition in which there is no more bacteria in the bioreactor.
This usually occurs when the rate of growth of the bacterial culture is not able to “catch-up”
with the rate of dilution of the bioreactor. Hence, understanding the asymptotic behavior of the
system becomes crucial in successfully operating continuous bioreactors [15].

Additionally, biological models are known to be subject to non-negligible parametric uncer-
tainty [30]. This occurs not only due to the inherent complexity of microorganisms, but also
to their genetic variability: generation after generation, bacteria face genetic modifications that
can progressively deviate the mathematical model from the real system [10]. Online parameter
estimation can compensate for these issues [8], but the operation parameters should be adjusted
accordingly. In this context, computing the stability of the equilibria in terms of the internal
parameters represents an important advantage.

1.2. Reduction to polynomial system solving

In the analyzed dynamical system, the existence of the equilibrium of interest is described by
a series of strict inequalities in terms of the system parameters; and its local stability is given
by the well-known Routh–Hurwitz stability criterion [7], which yields an additional inequality.
Deciding (through an algorithmic procedure) the consistency over the real numbers of polynomial
systems with real coefficients is a central problem in the area of effective real algebraic geometry.
Such systems define basic semi-algebraic sets. There are two families of algorithms for tackling
such a decision problem. The very first one goes back to Hilbert’s 17-th problem which asks
whether a non-negative multivariate polynomial with real coefficients can always been written
as a sum of squares of polynomials with real coefficients. Artin [2] showed that non-negative
polynomials with real coefficients are actually sums of squares of rational fractions with real
coefficients. A central result of real algebra is the Positivstellensatz [13, 27] which exhibits the
pattern of a certificate of emptiness for a basic semi-algebraic set. Computing such certificates
is proved to be hard. A more popular approach to certify non-negativity is based on reductions
to semi-definite programming through the moment method and the so-called Lasserre hierarchy
(see e.g. [14, 20]). These approaches are convenient to assess that a given polynomial (or a
family of polynomials) is non-negative while in our setting we have strict inequalities. Besides,
the certificates that are returned are approximate ones since the resulting semi-definite programs
are solved numerically. Lifting them to exact certificates is also far from easy [21], especially in
our setting (which involve strict inequalities over an unbounded domain).

We then focus on another family of algorithms which are “root finding” methods that can
handle systems involving strict inequalities. These procedures will compute points in the solu-
tion set of the polynomial system under consideration whenever such points exist. When the
solution set is empty, they just return an empty list (hence, without a witness of emptiness).
To ensure exactness, these algorithms make use of computer algebra methods which manipulate
symbolically the input polynomials with an exact arithmetic. Within this framework, there are
two families of algorithms. The very first one, initiated by Collins [5], computes a partition of
the semi-algebraic set defined by the input into pieces which are homeomorphic to ]0, 1[i, for
i ranging from 0 to the dimension of the ambient space, and which are arranged cylindrically
through repeated projections on coordinate subspaces. The computational cost of this approach
is doubly exponential in the dimension of the ambient space and polynomial in the number of
input polynomials and their maximum degree. A more modern approach, introduced in [11] and
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refined in [3] allows one to compute sample points per connected components of basic semi-
algebraic sets in time which is singly exponential in the number of variables and polynomial
in the number of input polynomials and their maximum degree. We refer the reader to [4] for
the foundations of such approaches and to [23] for more modern algorithms based on the crit-
ical point method and to the Maple package RAGlib [22] which implements them. The two
main functions which are provided by this Maple package RAGlib are HasRealSolutions and
PointsPerComponents. Both take as input polynomial systems of equations and strict inequal-
ities with coefficients in Q. They respectively decide whether the solution set is empty (when
it is not a sample point assessing the non-emptiness is provided) and compute sample points
per connected components. Roughly speaking, these functions “reduce” the problem of solving
polynomial systems of equations and inequalities over the reals to the one of solving families of
polynomial systems with finitely many complex solutions. These systems will have real solutions
if and only if the initial one has. They can then be rewritten in a triangular form, which is
the internal exact representation of the solutions, from which certified approximations of the
real solutions can be extracted using univariate real root isolation and backward substitution.
The polynomial system we need to solve is out of reach for the softwares implementing the
aforementioned methods as none of them was able to solve our problem within a full month of
computation.

1.3. Contributions

We investigate some structural properties of the polynomial system to solve and in particular
the degree pattern of our polynomial constraints w.r.t. the involved variables. By leveraging this
degree pattern, we simplify significantly the first steps of the Cylindrical Algebraic Decomposi-
tion algorithm and show that on the system we need to solve, the classical complexity growth one
faces does not occur. We push forward this investigation and show how to exploit even better the
degree patterns of intermediate data to find even stronger simplifications. In the end, after those
simplifications, we obtain a polynomial system with less variables which can be solved rather
easily (within a few seconds) by the RAGlib Maple package. These simplifications are based
on a careful geometric analysis of the solution set to the system we need to solve. This analy-
sis enables us to find more compact ways to describe their projection on coordinate subspaces
thanks to the degree patterns we already mentioned. In Section 2, we recall the self-replicator
model of the bioreactor under consideration and show how using Routh–Hurwitz criterion leads
to polynomial system solving issues. In Section 3, we describe how we take advantage of the
degree patterns in our problem to solve our polynomial system.

2. Self-replicator model for bacterial growth

2.1. Model definition

We consider a self-replicator mathematical model representing bacterial growth [37], which is
described in this paper in a simplified manner. A more detailed description of the dynamical
system can be found in [32], with a thorough analysis of the biological principles and assumptions
behind its derivation. In the model, the bacterial culture in the bioreactor has constant volume
and is subject to an inflow of fresh medium rich in substrate. The medium is supplied at constant
volumetric flow rate and with a certain substrate concentration. The bioreactor is also subject
to an outflow of same volumetric flow rate of bacterial culture, containing substrate, microbial
cells and metabolites of interest. In the continuous bioreactor framework, this is represented
through a parameter D called dilution rate, which is defined as the ratio of in-flow/out-flow
rate to culture volume. The quantities in the bioreactor are expressed as fractions of the culture
volume:

177



A.G. Yabo, M. Safey El Din, et al.

• s: the volume fraction of substrate, which is used by bacteria to grow and to produce
the compounds of interest.

• V: the volume fraction of the bacterial population.

• x: the volume fraction of the compound of interest.

The composition of the bacterial culture is described at the cell level as in [38], and thus the
quantities are mass fractions of the total bacterial mass:

• p: mass fraction of precursor metabolites, used to produce biomass and the compound
of interest.

• r: mass fraction of proteins of the gene expression machinery, responsible for the pro-
duction of biomass.

• m: mass fraction of proteins of the metabolic machinery, responsible for the uptake of
substrate from the medium, and the production of compounds of interest.

As, in nature, proteins account for most of the biomass of bacterial cells, the cellular mass is
assumed to be described by m and r, such that m + r = 1. However, if required for biological
purposes, the quantity m + r could be easily rescaled to be equal to a constant smaller than 1,
as done in [36]. Thus, the assumption does not imply that p occupies a negligible fraction of the
cell. The system can be externally controlled through two essential parameters: the above-defined
dilution rate D, which is subject to a positivity constraint, and an allocation control u, satisfying
u ∈ [0, 1]. The role of the allocation control is to decide whether the precursors are being used to
produce proteins r or m. In nature, the allocation of resources is governed by natural mechanisms
optimized by evolution. In biotechnological processes, this parameter can be controlled through
biosynthetic methods able to affect the expression of RNA polymerase [12, 17]. As this paper
focuses on the steady-state behavior of the system, u is a constant parameter.

p
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r
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) Rv

u
R
v
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Figure 2.1. Extended coarse-grained self replicator model [38].
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Following [32, 37], the system of differential equations that describes the evolution of the state
variables is given by 

ṡ = D(1 − s) − vM (s, m)V,

ṗ = vM (s, m) − vX(p, m) − vR(p, r)(p + 1),
ṙ = (u − r) vR(p, r),

ṁ = (1 − u − m) vR(p, r),
ẋ = vX(p, m)V − Dx,

V̇ = (vR(p, r) − D) V,

(Soriginal)

where the functions vM , vR and vX correspond to the relative synthesis rates of precursor
metabolites, macromolecules and compounds of interest, respectively. Based on [9], we define
the synthesis rates as linear in the concentrations m and r [24], and using Michaelis–Menten
kinetics [19] for the dependence on the component used for each reaction:

vM (s, m) .= k2 m
s

K2 + s
,

vR(p, r) .= r
p

K + p
,

vX(p, m) .= k1 m
p

K1 + p
·

(2.1)

As the system is analyzed in a steady-state regime, the control is fixed to a constant parameter
u(t) = u∗. Thus, the set of parameters is defined as θ

.= (K, k1, K1, k2, K2, u∗, D), which is
subject to the constraints

K > 0, k1 > 0, K1 > 0, k2 > 0, K2 > 0, 1 ≥ u∗ ≥ 0, D > 0. (2.2)

Using m + r = 1, we can express m = 1 − r, and thus remove m from the dynamical model.
Additionally, by analyzing the dynamics of the quantities s+(p+1)V +x and s+(p+r/u∗)V +x,
we can see that they both tend asymptotically to 1 when t → ∞1. Thus, the ω-limit set (i.e. the
set of points that can be limit of subtrajectories of the system) is characterized as follows.

Proposition 2.1. The ω-limit set of any solution of system (Soriginal) lies in the hyperplanes

Ω1
.=

{
(s, p, r, x, V) ∈ R5 : s + (p + 1) V + x = 1

}
, (2.3)

Ω2
.=

{
(s, p, r, x, V) ∈ R5 : s +

(
p + r

u∗

)
V + x = 1

}
. (2.4)

The latter implies that, for every trajectory, r converges to u∗ asymptotically, and x can be
expressed in terms of the remaining states as

x = 1 − s − (p + 1)V. (2.5)

The case u∗ = 0 is excluded from the study for its triviality, as it is rather simple to analyze.
Indeed, for this case, the hyperplane s + (p + m/(1 − u∗))V + x = 1 can be used for a similar
study. Thus, the asymptotic behavior of the original system (Soriginal) can be studied through
its limiting system given by

ṡ = D(1 − s) − vM (s, 1 − u∗)V,

ṗ = vM (s, 1 − u∗) − vX(p, 1 − u∗) − (p + 1)vR(p, u∗),
V̇ = (vR(p, u∗) − D) V.

(S)

1While in the present non-dimensional formulation these quantities have no physical meaning, they are based on
their equivalent on the original model formulation, which represents total mass in the bioreactor.
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In order to ensure that the original system (Soriginal) converges to the equilibria of the limiting
system (S), an additional analysis is required. The reader can refer to [32] for an application of
the theory of asymptotically autonomous systems [29].

2.2. Stability of the equilibrium of interest

In (S), there is a single equilibrium of interest (s∗, p∗, V∗), as the other existing equilibrium
(usually referred to as the washout equilibrium) is characterized by having V∗ = 0 (and thus
s∗ = 1), which does not allow for bacterial growth and metabolite production. By solving
ṡ = ṗ = V̇ = 0, we obtain the steady-state values in terms of the system parameters θ.

Proposition 2.2. The equilibrium of interest is

s∗(θ) = K2γ(θ)
k2(1 − u∗) − γ(θ) ,

p∗(θ) = DK

u∗ − D
,

V∗(θ) = D(1 − s∗(θ))(K2 + s∗(θ))
k2(1 − u∗)s∗(θ) ,

(2.6)

where

γ(θ) .= k1(1 − u∗) p∗(θ)
K1 + p∗(θ) + (p∗(θ) + 1)u∗ p∗(θ)

K + p∗(θ) · (2.7)

As the variables represent concentrations and biomass, they are non-negative quantities. Thus,
additional inequalities are required for the existence of the equilibrium, which can be obtained
by enforcing (s∗, p∗, V∗) > 0:

1 > u∗ > D, 1 > s∗(θ) > 0. (2.8)

Definition 2.3. A set of parameters θ is called admissible if it satisfies (2.2) and (2.8).

The steady state is thus determined by 7 variables. Preliminary numerical explorations on
a wide range of admissible parameters suggest that the system enjoys strong stability proper-
ties; see Figure 2.2. Not having been able to prove its global stability despite some structural
properties of the dynamics, we focus on local stability of the previous equilibrium. To this end,
we compute the eigenvalues over C of the Jacobian matrix and check whether their real part is
negative. For this case, the Jacobian matrix is defined as−D − ∂

∂s∗ vM (s∗, 1 − u∗)V∗ 0 −vM (s∗, 1 − u∗)
∂

∂s∗ vM (s∗, 1 − u∗) β(θ) 0
0 ∂

∂p∗ vR(p∗, u∗)V∗ vR(p∗, u∗) − D

 (2.9)

with

β(θ) = ∂

∂p∗ vX(p∗, 1 − u∗) − vR(p∗, u∗) − (p∗ + 1) ∂

∂p∗ vR(p∗, u∗) (2.10)

We define the functions

ϕ1(θ) = V∗k2
2KK2s∗(1 − u∗)2u∗

(K + p∗)3(K2 + s∗)2 , ϕ2(θ) = K (p∗ + 1)u∗

(K + p∗)2 ,

ϕ3(θ) = k1K1(1 − u∗)
(K1 + p∗)2 , ϕ4(θ) = V∗k2K2(1 − u∗)

(K2 + s∗)2 ,

(2.11)
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Figure 2.2. Numerical trajectories of (S) obtained for fixed initial conditions
and random set of admissible parameters θ (satisfying so the set of inequali-
ties (2.2) and (2.8)). In every case, the system converges to the equilibrium of
interest, which is characterized by the persistence of the bacterial population
V∗ > 0.

that satisfy ϕi(θ) > 0 for i ∈ {1, . . . , 4}. Computing the characteristic polynomial evaluated at
the equilibrium point given by (2.6) yields
P (λ) = ϕ1 + (ϕ2 + ϕ3 + λ + D)(ϕ4 + D + λ)λ

= λ3 + (2 D + ϕ2 + ϕ3 + ϕ4)λ2 +
(
D2 + Dϕ2 + Dϕ3 + Dϕ4 + ϕ2ϕ4 + ϕ3ϕ4

)
λ + ϕ1.

(2.12)

The Routh–Hurwitz criterion for degree-three polynomials states that the roots of a degree-three
polynomial λ3 + α2λ2 + α1λ + α0 belong to the open left complex plane if and only if

α2 > 0, α0 > 0 and α1α2 > α0.

From (2.12), since every function ϕi is positive, the stability criterion reads

(2 D + ϕ2 + ϕ3 + ϕ4)
(
D2 + Dϕ2 + Dϕ3 + Dϕ4 + ϕ2ϕ4 + ϕ3ϕ4

)
− ϕ1 > 0. (2.13)

In order to prove the latter, we can prove that no state-parameter combination satisfies the
negation of the condition,

−(2 D + ϕ2 + ϕ3 + ϕ4)
(
D2 + Dϕ2 + Dϕ3 + Dϕ4 + ϕ2ϕ4 + ϕ3ϕ4

)
+ ϕ1 ≥ 0. (POL)

The stability of the steady state of interest is given by the validity of the latter inequality, which
depends on the value of θ.

Routh–Hurwitz criterion reduces the study of the local stability of an equilibrium to an
algebraic problem. In some cases, depending on the complexity of the dynamical system (such
as its dimension and non-linearity), such a problem may be solved analytically. The difficulty
in our case stems from the large number of non-zero coefficients of the left-hand side of (POL)
in the standard monomial basis. The tailored computer algebra methods described in the rest
of the paper allows us to obtain the following stability property of the family of equilibria of
interest:

Theorem 2.4. On a dense subset of the set of admissible parameters θ = (K, k1, K1, k2,
K2, u∗, D), the equilibrium (s∗(θ), p∗(θ), V∗(θ)) is locally stable.

The next section is devoted to the proof of this result. The Maple worksheet used to prove the
result is available online2 as a companion notebook to the current paper. It makes an intensive
use of the RAGlib package.
2See https://ct.gitlabpages.inria.fr/gallery

181

https://www-polsys.lip6.fr/~safey/RAGLib
https://ct.gitlabpages.inria.fr/gallery


A.G. Yabo, M. Safey El Din, et al.

3. Computer algebra analysis of stability

We start the proof of Theorem 2.4 with a preparatory change of variables. As is clear from (2.6)
and (2.7), in the range of admissible parameters one can express K in terms of (p∗, u∗, D), and
k1 in terms of (γ, u∗, p∗, K1, K) while γ itself is obtained as a function of (s∗, K2, k2, u∗).
Accordingly, the following is true:
Lemma 3.1. There is a birational change of variables

(i) from θ = (K, k1, K1, k2, K2, u∗, D) to (p∗, s∗, K1, k2, K2, u∗, D),

(ii) then from (p∗, s∗, K1, k2, K2, u∗, D) to θ′ := (s∗, p∗, K ′
1, k2, K ′

2, u∗, D) where
K ′

1 := K1 + p∗, K ′
2 := K2 + s∗.

The resulting system of inequalities becomes

K > 0, k1 > 0, K ′
1 − p∗ > 0, k2 > 0, K ′

2 − s∗ > 0,

1 > u∗ > D > 0, 1 > s∗ > 0, C < 0, (3.1)
where C is a polynomial of total degree 13 involving the above 7 variables, whose number of non-
zero coefficients in the standard monomial basis is 164, that is associated with the numerator
of (POL) left-hand side. (We refer to the companion notebook for the detailed expression of C.)
Note that we restrict the analysis to strict inequalities. Clearly, it suffices to prove the proposition
below to obtain Theorem 2.4.
Proposition 3.2. The semi-algebraic set defined by (3.1) is empty.

Feeding HasRealSolutions with system (3.1) without further simplification does not allow
to obtain a solution in reasonable time.3 The crucial observation to obtain a computation-
ally tractable proof of Proposition 3.2 is related to the degree pattern of the input system.
Indeed, observe that the system (3.1) involves 11 polynomial inequalities in the polynomial
ring Q[s∗, p∗, K ′

1, k2, K ′
2, u∗, D] but only two of them have positive degree in K ′

1. In other words,
amongst these inequalities, 9 lie actually in Q[s∗, p∗, k2, K ′

2, u∗, D]. This gives rise to the following
idea: one may reduce our initial problem (deciding the consistency of the system (3.1)) to the
study of some semi-algebraic set defined by polynomial inequalities in Q[s∗, p∗, k2, K ′

2, u∗, D].
Hence, we are in the process of eliminating the variable K ′

1 from (3.1), that is computing
polynomial inequalities that would define the projection of the solution set to (3.1) on the
(s∗, p∗, k2, K ′

2, u∗, D) coordinate space. A key tool for algebraic elimination is the resultant of
two univariate polynomials, which we now recall before dwelving into the proof of Proposi-
tion 3.2.

Let R be a ring and f and g be two polynomials in R[x] of respective degree p and q. The
resultant associated to (f, g) is the determinant of the Sylvester matrix which is the one obtained
by stacking on each row the coefficients of the polynomials xif and xjg for 0 ≤ i ≤ q − 1 and
0 ≤ j ≤ p − 1 (see e.g. [4, Chapter 4]). This resultant is 0 if and only if f and g have a gcd
of positive degree. The discriminant of a polynomial f is the resultant of f and its derivative
∂f
∂x divided by an appropriate power of the leading coefficient of f (see e.g. [4, Chapter 4]).
When dealing with polynomials f and g in Q[x1, . . . , xn], one can see them as polynomials
in Q[x1, . . . , xn−1][xn]. The resultant (resp. discriminant) associated to (f, g) (resp. f) is then
denoted by resultant(f, g, xn) (resp. discriminant(f, xn)). Note that they lie in Q[x1, . . . , xn−1]
(as does the leading coefficient of f w.r.t. xn which we denote by lc(f, xn)). These are the tools
we use to describe the projection on a subspace of coordinates of a semi-algebraic set. These tools
eliminating one variable from a finite sequence of polynomials are the ones used by the Cylindrical
3Computation not terminated after one month on an Intel(R) Xeon(R) Gold 6244 CPU @ 3.60GHz with 1.5 To
of RAM.
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Algebraic Decomposition recursively algorithm and its so-called “open” Cylindrical Algebraic
Decomposition which applies to systems of strict inequalities [28]. We will use properties of
resultants and discriminants further in our approach.

Let now f1, . . . , fs be polynomials in Q[x1, . . . , xn] and let S ⊂ Rn be the semi-algebraic set
defined by

f1 > 0, . . . , fs > 0 (3.2)
with fi ∈ Q[x1, . . . , xn−1] for 1 ≤ i ≤ t and deg(fj , xn) > 0 for all t + 1 ≤ j ≤ s. Note that since
S is open for the Euclidean topology, its projection on the (x1, . . . , xn−1) coordinate space is
open too. Let S′ be the semi-algebraic set defined by

fi > 0 for 1 ≤ i ≤ t, and
resultant(fi, fj , xn) ̸= 0, discriminant(fi, xn) ̸= 0 for t + 1 ≤ i ≤ j ≤ s

lc(fi, xn) ̸= 0 for t + 1 ≤ i ≤ s.

(3.3)

By [28], there exist connected components C1, . . . , Cℓ of S′ such that C1 ∪ · · · ∪ Cℓ is semi-
algebraic and dense in the projection of S on the (x1, . . . , xn−1) coordinate space. We call the
OpenCAD, the procedure which, given the polynomial system f1 > 0, . . . , fs > 0 and the variable
xn as inputs, returns the polynomial system (3.3). Hence, in order to decide the consistency over
the reals of the system of inequalities (3.2), it suffices to

(a) compute from it the system of polynomial inequations and inequalities (3.3) using the
procedure OpenCAD;

(b) compute at least one sample point per connected component in the semi-algebraic set S′

defined by (3.3) (note that we may get several points per connected component). This is
what the command PointsPerComponents from the RAGlib package is designed for;

(c) letting α1, . . . , αr be those sample points, solve the univariate system of polynomial
inequalities

ft+1(αi, xn) > 0, . . . , fs(αi, xn) > 0,

for each 1 ≤ i ≤ r. If the system is not consistent over the reals then one can conclude
that S is empty (in other words, the system (3.2) is not consistent over the reals).

Launching this computation on system (3.1) is still not computationally tractable. To further
reduce computations, we rely on the following property of the system, which can easily be
checked (e.g., on the Maple worksheet attached with the paper).

Lemma 3.3. In system (3.1), only two polynomials have positive degree in K ′
1: one has degree 2

in K ′
1, and the other one has degree 1 in K ′

1.

We assume from now on that deg(fs, xn) = 2 (so fs has real roots if and only if its discriminant
is non-negative) and deg(fi, xn) = 1 for t + 1 ≤ i ≤ s − 1. We let C be a connected component
of S′ that is contained in the projection of S on the (x1, . . . , xn−1) coordinate space. In other
words, for any α ∈ C ⊂ Rn−1, there exists ϑ ∈ R such that fi(α, ϑ) > 0 for t + 1 ≤ i ≤ s. By
definition of S′, the discriminant of fs does not vanish over C. We then consider the two possible
cases:

(i) when discriminant(fs, xn) is negative over C, for any α ∈ C, fs(α, xn) has no real root
and is then positive (because as explained above, there exists ϑ ∈ R such that fs(α, ϑ) > 0
and since fs has no real root, our positivity statement holds);

(ii) when discriminant(fs, xn) is positive over C, for any α ∈ C, fs(α, xn) has exactly two
real roots with multiplicity one and there exists ϑ such that fs(α, ϑ) is positive.
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Note that the leading coefficient of fs did not play any role in the above observations. This leads
us to consider the semi-algebraic set S′′ which is defined by

fi > 0 for 1 ≤ i ≤ t, and
resultant(fi, fj , xn) ̸= 0, discriminant(fi, xn) ̸= 0 for t + 1 ≤ i ≤ j ≤ s

lc(fi, xn) ̸= 0 for t + 1 ≤ i ≤ s − 1.

(3.4)

Note also that the only difference is that we do not consider the leading coefficient of fs anymore
(the last inequalities in (3.4) range from i = t + 1 to s − 1). The connected components of S′′

are unions of some connected components of S′ and some connected semi-algebraic subsets
of the vanishing set of lc(fs, xn) (over which none of the other polynomials used to define S′′

vanishes). Moreover, by definition of S′′, over any connected component C of S′′, the discriminant
polynomial discriminant(fs, xn) is sign invariant.

Proposition 3.4. Assume that the semi-algebraic set S is non-empty. Then, there exists a
connected component C of S′′ such that any α ∈ C which does not cancel lc(fs, xn) lies in the
projection of S on the (x1, . . . , xn−1) coordinate space.

Proof. Consider the semi-algebraic set defined by f1 > 0, . . . , fs−1 > 0. Running the proce-
dure OpenCAD on the input [f1, . . . , fs−1], xn builds a polynomial system which is the same as
system (3.3) without the constraints discriminant(fs, xn) ̸= 0 and resultant(fi, fs, xn) ̸= 0 for
1 ≤ i ≤ s − 1. Let C be a connected component of S′′. By [28, Lemma 3.6 and the discussion
below on the proof of Algo. 3.5], there exist finitely many continuous semi-algebraic maps (i.e.
maps whose graphs are semi-algebraic sets) ξ1, . . . , ξk from C to R such that the cylinder C ×R
is the disjoint union of cells defined as

• either the graph of one of the maps ξi for 1 ≤ i ≤ k,

• or a band of some cylinder
Bi = {(α, ϑ) | α ∈ C and ξi(α) < ϑ < ξi+1(α)}

for 0 ≤ i ≤ k with ξ0 = −∞ and ξk+1 = +∞ by convention,

over which the polynomials f1, . . . , fs−1 are sign invariant (because the system output by the call
to the procedure OpenCAD on the input [f1, . . . , fs−1], xn is contained in (3.3), and then defines
a dense open semi-algebraic subset of S′′).

Note that, following the argumentation of the correctness of [28, Algorithm 3.5], for α ∈ C,
ξ1(α), . . . , ξk(α) is the ordered sequence of roots of the polynomials ft+1(α, xn), . . . , fs−1(α, xn)
(note that these are univariate). Hence, the semi-algebraic maps ξi’s are defined as maps which
send α ∈ C to some root of some fj(α, xn) (those roots being maintained ordered when α ranges
over C).

Assume now that C has a non-empty intersection with the projection of S on the (x1, . . . , xn−1)
subspace of coordinates (note that if S is non-empty, there exists such a connected component C
of S′′ since S and S′′ are both open for the Euclidean topology). Let α be in this intersection such
that lc(fs, xn) does not vanish at α (such a point α exists because C is open for the Euclidean
topology as well as the projection of S and the solution set to lc(fs, xn) ̸= 0). In other words,
there exists ϑ such that

f1(α, ϑ) > 0, . . . , fs(α, ϑ) > 0.

Let Bi be the band which contains (α, ϑ). Consider now α′ ∈ C and assume that lc(fs, xn)(α′) ̸=
0. We need to prove that there exists ϑ′ ∈ R such that (α′, ϑ′) ∈ S. Note that, by the sign
invariance property over the band Bi of f1, . . . , fs−1, we already know that there exists ϑ′ such
that fj(α′, ϑ′) > 0 for 1 ≤ j ≤ s − 1. Hence, what is missing is a control on the sign of fs,
precisely that there exists ϑ′ ∈ R such that fs(α′, ϑ′) > 0. The next lemma is a first step towards
this. We postpone its proof to next section.
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Lemma 3.5. Assume that there exists a continuous semi-algebraic path γ : [0, 1] → C such that
γ(0) = α and γ(1) = α′ such that for any v ∈ [0, 1], lc(fs, xn) does not vanish at γ(v), with α in
the projection of S on the (x1, . . . , xn−1) coordinate space. Then, for any v ∈ [0, 1], γ(v) lies in
the projection of S on the (x1, . . . , xn−1)-space.

Since α and α′ both lie in C which is connected, they can be connected with semi-algebraic
paths in C. Assume now that any continuous semi-algebraic path in C linking α to α′ meets
the vanishing set of lc(fs, xn). Note that since the vanishing set of lc(fs, xn) has dimension at
most n − 1, one can, without loss of generality, assume that the intersection of the continuous
semi-algebraic path under consideration, linking α to α′, with the vanishing set of lc(fs, xn) is
finite. Hence, there exists {v1, . . . , vN } ⊂ [0, 1] such that

{v1, . . . , vN } = {v ∈ [0, 1] | lc(fs, xn)(γ(t)) = 0}
and we define v0 = 0 and vN+1 = 1. We let γj be the semi-algebraic continuous path v ∈
]vj , vj+1[→ γ(v) for 0 ≤ j ≤ N . Note that γj can be extended by continuity to vj and vj+1
by just taking γj(vj) = γ(vj) and γj(vj+1) = vj+1 (since γ is continuous). By a slight abuse
of notation, we still denote by γj that semi-algebraic map which is extended to [vj , vj+1]. Note
that γ0(v0) = α which, by assumption, lies in the projection of S on the (x1, . . . , xn−1)-space.
We use the following lemma (also proved in the next section):

Lemma 3.6. Let γ : [0, 1] → C be a semi-algebraic continuous map such that

• for all v ∈ [0, 1[, lc(fs, xn) does not vanish at γ(v) but does at γ(1);

• γ(0) lies in the projection of S on the (x1, . . . , xn−1) coordinate space.

Then, for all v ∈ [0, 1], γ(v) also lies in the projection of S on the (x1, . . . , xn−1) coordinate
space.

We apply inductively Lemma 3.6 to the semi-algebraic continuous paths γj (up to translating
and scaling [vj , vj+1] to [0, 1]) as follows. First note that for j = 0, γ0 satisfies the assumptions
of Lemma 3.6 (again, scaling [0, v1] to [0, 1]) since γ0(0) = γ(0) = α which lies in the projection
of S on the (x1, . . . , xn−1)-space by assumption. Hence, Lemma 3.6 allows us to deduce that for
all v ∈ [0, v1], γ(v) lies in the aforementioned projection of S. This implies that γ1 satisfies the
assumptions of Lemma 3.6.

Assume now that for j < N , γj satisfies the assumptions of Lemma 3.6 (again, by translation
and scaling, [vj , vj+1] is sent to [0, 1]. Following the same reasoning as above, we deduce that
γj+1 satisfies the assumptions of Lemma 3.6. We deduce that γN does satisfy the assumptions
of Lemma 3.6 which then implies that γN (1) = γ(1) = α′ lies in the projection of S on the
(x1, . . . , xn−1)-space, as requested. This ends the proof of Proposition 3.4. □

Denote by ModifiedOpenCAD the procedure which takes as input f1, . . . , fs as above and
returns the system of polynomial constraints as in (3.3). By Proposition 3.4, it suffices to compute
sample points α1, . . . , αr per connected components of the semi-algebraic set defined by (3.3) at
which lc(fs, xn) does not vanish (recall that doing so is the purpose of the PointsPerComponents
command of RAGlib) and decide if the univariate system of polynomial inequalities

ft+1(αi, xn) > 0, . . . , fs(αi, xn) > 0
has real solutions (which is easily done with real root isolation algorithms) for each 1 ≤ i ≤ r.
Running this computation does not provide any result in a reasonable time, even when one
takes advantage of special simplifications which we make explicit in the next section. However,
note that one can use the same strategy in one dimension less, and apply the procedure OpenCAD
to (3.3) as input which provides a new system of polynomial inequalities/inequations. Computing
sample points per connected components for the semi-algebraic set defined in Rn−2 by this
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new system is done within a minute on a standard laptop with PointsPerComponents (when
exploiting some simplifications which we make explicit in the next section). Next, one can “lift”
those points by instantiating x1, . . . , xn−2 in (3.3) and solve the obtained univariate polynomial
systems of constraints for xn−1. This will provide sample points per connected components of
the semi-algebraic set defined by (3.3), which can be lifted to Rn as sketched above and finally
solve our decision problem. These latter steps take a few second. All in all, these computations
prove that the semi-algebraic set defined by (3.1) is empty, which allows to conclude the proof
of Proposition 3.2. Theorem 2.4 is proved.

4. Proof of auxiliary lemmas

Proof of Lemma 3.5. Note that for any v ∈ [0, 1], and any ξi(γ(v)) < ϑv < ξi+1(γ(v)), the
following holds:

f1(γ(v), ϑv) > 0, . . . , fs−1(γ(v), ϑv) > 0.

Recall also that, by definition of S′′, the discriminant discriminant(fs, xn) is sign invariant over
C. If it is negative, then for any v ∈ [0, 1], fs(γ(v), xn) has no root in R (because we have assumed
that lc(fs, xn) does not vanish at γ(v)). Since, by construction, fs(γ(0), xn) is positive over R,
we deduce that for any v ∈ [0, 1], fs(γ(v), xn) is positive over R (else, by continuity of γ, there
would exist some v′ such that fs(γ(v′), xn) has some real root while lc(fs, xn) does not vanish at
γ(v′), which would contradict our assumption of the negativity of discriminant(fs, xn) over C).
Assume now that discriminant(fs, xn) is positive over C. As above, we need to prove that for any
v ∈ [0, 1], there exists ϑv ∈ Bi such that fs(γ(v), ϑv) > 0. We start with v = 0. We already know
by construction that there exists ξi(γ(0)) < ϑ < ξi+1(γ(0)) such that fs(γ(0), ϑ) > 0. Assume
by contradiction that there exists v′ ∈ [0, 1] such that for any ξi(γ(v′)) < ϑ′ < ξi+1(γ(v′)), it
holds that fs(γ(v′), ϑ′) ≤ 0. By continuity of γ, ξi and ξi+1, the set of such reals v′ is closed
in [0, 1]. We let v′

min be the smallest element of this set. By continuity of the ξi’s we deduce
that fs(γ(v′

min), ξi(γ(v′
min))) = 0 or fs(γ(v′

min), ξi+1(γ(v′
min))) = 0. Recall that there exists some

t + 1 ≤ j ≤ s − 1 such that ξi maps α ∈ C to some root of fj . In other words, the gcd of
fs(γ(v′

min), xn) and fj(γ(v′
min), xn) has degree ≥ 1. This implies that for some j, the resultant

polynomial resultant(fj , fs, xn) vanishes at γ(v′
min). This is a contradiction since C is a connected

component of S′′, defined by (3.3) which contains the constraint resultant(fj , fs, xn) ̸= 0. This
ends the proof of Lemma 3.5. □

Proof of Lemma 3.6. Take w ∈ ]0, 1[. Up to scaling [0, w] to [0, 1], one applies Lemma 3.5 to
deduce that γ(w) lies in the projection of S on the (x1, . . . , xn−1) coordinate subspace.

Since γ(w) lies in the projection of S on the (x1, . . . , xn−1) coordinate subspace, there exists
ϑw ∈ R such that (γ(w), ϑw) ∈ S

f1(γ(w), ϑw) > 0, . . . , fs−1(γ(w), ϑw) > 0, fs(γ(w), ϑw) > 0

Note that ϑw can be chosen in the interval ]ξi(γ(w)), ξi+1(γ(w))[ where ξi is one of the “root”
functions introduced in the previous section. By continuity of γ, the equality γ(1) = limw→1(γ(w))
holds. We are going to prove that γ(1) lies in the projection of S on the (x1, . . . , xn−1) coor-
dinate subspace. By assumption, lc(fs, xn) vanishes at γ(1). Note that, by definition of the
discriminant of a quadratic polynomial, this implies that discriminant(fs, xn) is non-negative
at γ(1). Also, discriminant(fs, xn) is sign invariant over γ([0, 1]) (since the inequation con-
straint discriminant(fs, xn) ̸= 0 is part of the polynomial system (3.3)). Hence, we deduce that
discriminant(fs, xn) is positive over γ([0, 1]). Recall that we established that, for all w ∈ ]0, 1[,
γ(w) lies in the projection of S on the (x1, . . . , xn−1) coordinate space. Hence, for w ∈ ]0, 1[,
the univariate polynomial fs(γ(w), xn) has two real roots (let us denote them by ρ1(γ(w)) and
ρ2(γ(w))) and the locus where it is positive meets the interval ]ξi(γ(w)), ξi+1(γ(w))[. Assume by
contradiction that γ(1) does not lie in the projection of S on the (x1, . . . , xn−1) coordinate space.
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Then, by continuity of γ, ξi, ξi+1 and the two roots ρ1 and ρ2 of fs(γ(.), xn) we deduce that one
of the two roots ρ1(γ(1)), or ρ2(γ(1)) coincides with either ξi(γ(1)) or ξi+1(γ(1)). By definition of
the ξi’s, this implies that the resultant polynomial resultant(fr, fs, xn) (for t+1 ≤ r ≤ s−1) van-
ishes at γ(1). This is a contradiction since this resultant polynomial cannot vanish over γ([0, 1])
(by definition of S′′). Hence we deduce that γ(1) lies in the projection of S on the (x1, . . . , xn−1)
coordinate space as requested. □

5. Conclusion

System (S) has a specific structure that is rather common in models of mathematical biology.
As is clear by inspecting the Jacobian matrix (2.9), the system has a negative feedback loop.
Local and global stability properties of such systems have been widely studied (see, e.g., [1, 16]),
taking advantage of monotone systems properties [25]. A raw picture in dimension three is that
such a system either oscillates or is globally stable around the unique positive equilibrium ([16]).
We tried to apply these techniques to our system, but up to now did not manage to conclude. So
we believe that the local stability approach (instead of a global analysis) that we have developed
in this paper is a meaningful step towards a more general result.

The relevance of the study of systems describing bacterial growth in the context of continuous
bioreactors is a subject of research with a long history [18, 26] and a wide range of applications.
In particular, the biosynthesis of chemical compounds with the aid of bacterial cells is central
in numerous applications such as the production of insulin, antitumor agents, antibiotics and
insecticides, among others. Numerous questions regarding the study of the dynamical behav-
ior of such systems remain unanswered. In this context, this paper represents an alternative
multi-disciplinary approach to the standard methods existing in the research community of
mathematical biology.
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