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Abstract

We study the classic pure selection integrodifferential equation, stemming from adaptative dynamics, in
a measure framework by mean of duality approach. After providing a well posedness result under fairly
general assumptions, we focus on the asymptotic behaviour of various cases, illustrated by some numerical
simulations.

1. Introduction

1.1. A brief state of the art

The synthetic theory of evolution is nowadays the golden standard to explain the variety of
living species, as well as their disappearing. This theory predicts fluctuations in populations due
to the occurence of mutations, that are then possibly selected by the environment. For decades
now, mathematical models have aimed at studying these phenomena, both from an individual
point of view and at the population level. This first approach leads to agent based models,
that use stochastic processes [15, 16, 17, 18, 20, 23, 27, 37]. It also provides a derivation of the
deterministic counterpart of the studied model. When a large enough population is considered,
the behaviours of individuals are averaged, resulting in deterministic equations, such as ordinary
differential, integro-differential or partial differential equations. The famous selection-mutation
model and its variants have been extensively studied for decades now [1, 2, 5, 7, 8, 11, 13,
21, 24, 29, 33, 34, 36, 41]. In this type of models, populations are structured by trait, and the
competitive interactions often lead to the selection of the best trait. Various aditionnal features
can be added, be it for example clonal selection and two populations interacting [9, 10], intra
species cooperation or competition [22], horizontal gene transfer [12] or the addition of a space
variable to account for the behaviour of tumor cells, see [6, 38, 44] and reference therein.

This article focuses on the pure selection equation, that have already been studied by many
authors, see [3, 4, 26, 35, 41] among others. One of its goals is to provide a measure framework
to study this equation with a very general selection pressure operator, denoted Σ. The resulting
equation is then {

∂
∂tn(t, x) = Σ[n(t, · )](x)n(t, x) t > 0, x ∈ X

n(0, x) = n0(x), x ∈ X
(1.1)

in which traits x lie in a subset of Rd denoted X, with d a positive integer. In past years, efforts
have been made to state the considered models in spaces of measures [3, 4, 13, 25]. The interest
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of such a general formulation, both of the type of solution and of the selection pressure operator,
lies in the broad class of models included. Indeed, in the case of X being a finite subset of R, say
X = {x1, . . . , xK}, Equation (1.1) reduces to a system of ODE, such as competitive models in
the sense of Hirsch [30, 31, 32]. For example, denoting n(t, xi) the amount of the ith population
at time t, with ri its intrinsic growth rate and αi,j the competition coefficients with the jth
species, we recover the general system mentionned in [40] by choosing

Σ[n(t, · )](xi) := ri

1 −
K∑

j=1
αi,jn(t, xj)

 ,

and even more general models are possible, see [19].

1.2. Framework for measure solutions by duality

As previously mentioned, measure solutions to structured population equation have attracted
much attention during the past years. Recent articles summon the theory of semigroups to
express these kind of solutions, both in case of linear or nonlinear equation. We refer to [28] for
a complete exposition of the relevant measure theory.

We denote the set of bounded Borel functions defined on X by B(X). For any f lying in this
set, the supremum norm is defined by

∥f∥∞ = sup
x∈X

|f(x)|.

Endowed with the supremum norm, the space C(X) of continuous functions on X is a Banach
space. We can identify its topological dual space with M(X) the space of signed measures on
X, thanks to the Riesz representation theorem, through the mapping{

M(X) −→ (C(X))′

µ 7−→ (f 7→ ⟨µ, f⟩)

which is an isometric isomorphism, thus

∥µ∥T V = sup
∥f∥∞⩽1

⟨µ, f⟩

defines a norm on M(X), so it is a Banach space. The standard Hahn–Jordan decomposition
of a signed measure µ is µ = µ+ − µ− with µ+, µ− ∈ M+(X) the set of finite non negative
measures, and these measures are mutually singular. This decomposition enables to define

|µ| := µ+ + µ−

which is a non negative measure. In turn, we can define the total variation norm of a measure
µ by

∥µ∥T V := |µ|(X) = µ+(X) + µ−(X).
It is worth stressing out that for a non negative measure µ, one has

∥µ∥T V = µ(X) = ⟨µ,1X⟩.

Finally, we explain how to extend the classical sense of Equation (1.1) to measures. Assume that
n(t, x) ∈ C([0, ∞); L1(X)) is differentiable in time and satisfies (1.1) in the classical sense. Then,
multiplying (1.1) by f ∈ B(X) and integrating it in space and then time, we obtain∫

X
f(x)n(t, x) dx =

∫
X

f(x)n0(x) dx +
∫ t

0

∫
X

Σ[n(s, · )](x)f(x)n(s, x) dx ds.

This equation leads us to the following definition of measure solution for Equation (1.1).
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Definition 1.1. Let T > 0. A family (µt)0⩽t⩽T ∈ C([0, T ]; M(X)) with initial measure µ0 is
called a measure solution to the pure selection equation with initial data µ0 if for all f ∈ Cb(X)
the mapping t 7→ ⟨µt, f⟩ is continuous on [0, T ], and for all t ⩾ 0 and all bounded measurable
functions f on X one has

µtf = µ0f +
∫ t

0
µs (Σ[µs]f) ds (1.2)

1.3. Assumptions and well posedness result

We make the following assumptions on the selection pressure operator. First, we require that
for each measure µ bounded in total variation norm, the associated selection pressure Σ[µ] is a
bounded Borel function

Σ :
{

M+(X) −→ B(X)
µ 7−→ Σ[µ].

In addition, we require

∀ r > 0, ∃ k(r) > 0, ∀ µ, ν ∈ M+(X),
∥µ∥T V , ∥ν∥T V ⩽ r =⇒ ∥Σ[µ] − Σ[ν]∥∞ ⩽ k(r)∥µ − ν∥T V (1.3)

where r 7→ k(r) is a locally bounded function defined on R+. This assumption is reminiscent of
the first assumption in Remark 2.2 from [26] in the context of L1 functions and [13] in that of
measures, but endowed with the dual bounded Lipschitz norm. Roughly, it can be interpreted
as follows. Given two populations made of the same amount of people, the difference of their
two selection pressures cannot grow too fast, compared to how different are these populations.
Then we assume

∃ F > 0 ∀ µ ∈ M+(X), ⟨µ, Σ[µ]⟩ ⩽ Fµ(X). (1.4)
The quantity ⟨µ, Σ[µ]⟩ can be interpreted as the fitness of a population described by a measure
µ, i.e. the mean number of offsprings minus the mean number of deaths. Assumption (1.4) thus
enforces the population to grow at most of a factor F per time unit. In addition, not imposing
any lower bound to this value allows the population to possibly go extinct. This hypothesis is
more general than the second one in Remark 2.2 from [26] in which the constant F is replaced
by a function A1 − A2 (µ(X)) with A1 > 0 and A2(z) → ∞ when z → ∞. This stronger
assumption though ensures that the total population remains bounded in large time, which is
not the case with ours, see Remark 1.3. The ability for such a population to grow infinitely was
already noted in [13], in which a slightly more general hypothesis than (1.4). Its equivalent in
the langage deployed in the present paper would be

µ 7−→ ⟨µ, Σ[µ]⟩
is bounded on every ball, which is straightforward with Hypothesis (1.4). These assumptions
are enough to ensure well posedness results. The following one provides a sufficient condition for
non extinction.

µ ∈ M+(X) and Σ are such that µ({Σ[0] > 0}) > 0. (1.5)
It can be interpreted as the existence of a set of traits with positive µ−measure that have the
potential to proliferate, in the absence of competition.

Theorem 1.2. Assume the selection operator satisfies Assumptions (1.3) and (1.4). Then for
every nonnegative initial measure µ0, there exists a unique measure solution (µt)t⩾0 to Equa-
tion (1.1) in the sense of Definition 1.1 that lies in C ([0, T ]; M+(X)) for any T > 0. In addition,
if (νt)0⩽t⩽T is a family of measures with nonnegative initial conditions ν0 that satisfies the same
hypotheses, there exists a function L = L(T ) > 0 such that

∀ t ∈ [0, T ], ∥µt − νt∥T V ⩽ eL(T )t∥µ0 − ν0∥T V .
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In addition, for every t ⩾ 0, supp µt ⊂ supp µ0. If the additionnal Hypothesis (1.5) holds, then

inf
t⩾0

µt(X) > 0.

Remark 1.3. The assumptions above are enough to prove that such a measure solution is globally
defined, but fail to ensure that the total population µt(X) = ∥µt∥T V remains bounded for all
times. Indeed, combining Assumption 1.4 with the mild formulation above, we obtain that for
any t ⩾ 0, one has

µt(X) ⩽ µ0(X) + F

∫ t

0
µs(X) ds

so Grönwall’s lemma provides
µt(X) ⩽ µ0(X)eF t

which ensures that the solution does not blow up in finite time. Now consider the very simple
case Σ[µ] = e−∥µ∥T V 1X . One can show that this selection operator satisfies all the assumptions
of the theorem

∀ µ ∈ M(X), Σ[µ] ∈ B(X), ∀ µ ∈ M+(X), ⟨µ, Σ[µ]⟩ = ∥µ∥T V e−∥µ∥T V ⩽ ∥µ∥T V

(it is even uniformly bounded by e−1) and

∀ µ, ν ∈ M(X), ∥Σ[µ] − Σ[ν]∥∞ ⩽ |∥µ∥T V − ∥ν∥T V | ⩽ ∥µ − ν∥T V

but since t 7→ ∥µt∥T V is solution of the ODE
d
dt

x = e−xx

the total population goes to infinity in large time. An hypothesis in the flavour of “the planet is
finite” [43] such as

∃ M > 0, ∀ µ ∈ M(X), [∥µ∥T V > M ⇒ Σ[µ] ⩽ 0]

ensures the boundedness of the population in large time. The phenomenon of infinite population
in finite time is possible with a slightly weaker hypothesis than (1.4), see (H5) in [13]. In contrast,
it is avoided in [26] by such an assumption, that would translate here as the stronger condition

⟨µ, Σ[µ]⟩ ⩽ (A1 − A2(µ(X))) µ(X)

for all nonnegative finite measure µ, with A1 > 0 and A2 a function satisfyng limz→∞ A2(z) = ∞.

2. Well-posedness and stability

This section is devoted to the wellposedness result, stated on fairly general assumptions on the
selection pressure operator. Our construction of a solution of Equation (1.2) relies on a fixed-
point method on the families of measures C([0, T ]; M(X)) with T > 0 short enough, that we
then iterate on time intervals of variable length. For a given T > 0, the aforementioned space is
a Banach space once endowed with the norm

sup
t∈[0,T ]

∥µt∥T V .

Throughout the paper, when we refer to a family of measures, we used the notation (νt)0⩽t⩽T

or (ν). For such a family, we introduce a family of operators acting on the set of finite measures
for 0 ⩽ s ⩽ t ⩽ T by

µM
(ν)
s,t : f 7−→

∫
X

fe
∫ t

s
Σ[νσ ]dσdµ. (2.1)
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It is easy to see that this family defines a time inhomogeneous semigroup, since one can check
that for 0 ⩽ s ⩽ u ⩽ t ⩽ T , it satisfies{

µM
(ν)
s,t = µM

(ν)
s,u M

(ν)
u,t

µM
(ν)
s,s = µ.

In order to prove the wellposedness of Equation (1.2), we first prove that there exists a unique
family of measures denoted (µt)t⩾0 such that for all t ⩾ 0, one has

µt = µ0M
(µ)
0,t

or equivalently for all t ⩾ 0 and f ∈ Cb(X)

⟨µt, f⟩ =
∫

X
fe
∫ t

0 Σ[µs]dsdµ0.

As a first step, we prove the result for selection operators that are uniformly bounded from
above.

Lemma 2.1. Under the same assumptions as Theorem 1.2, if the selection pressure operator is
in addition uniformly bounded from above, i.e.

∃ n > 0, ∀ µ ∈ M+(X), ∀ x ∈ X, Σ[µ](x) ⩽ n, (2.2)
for any nonnegative initial data µ0 and final time T > 0, there exists a unique family of measures
(µt)0⩽t⩽T ∈ C([0, T ]; M(X)) such that for all t ⩾ 0

µt = µ0M
(µ)
0,t . (2.3)

Each measure of this family has the same support as the one of µ0.

Proof. For an initial datum µ0 ∈ M(X), we want to prove that the function

(ν) 7−→ µ0M
(ν)
0,t

has a unique fixed point. One can easily check that for any family (ν) ∈ C ([0, T ]; M(X)) and
final time T > 0, the family (Γµ(ν)) lies in C ([0, T ]; M(X)) and that if µ is nonnegative, then
so is (Γµ(ν))t for any t ∈ [0, T ]. To start, we prove this lemma in short time, i.e. for the final
time T > 0 small enough. For later prupose, let us introduce the set

BT
µ := {(νt)0⩽t⩽T ∈ C([0, T ]; M+(X))| ν0 = µ, ∥ν∥ ⩽ 2∥µ∥T V } .

For T a final time short enough so that if (ν) lies in BT
µ , so does (Γ(ν)). Since BT

µ0 is a closed
subset of C([0, T ]; M(X)), it is a complete metric space with the distance induced by the norm
supt∈[0,T ] ∥ · ∥T V , so we can apply the Banach fixed-point theorem.

For 0 ⩽ t ⩽ T , f ∈ B(X) and (ν1), (ν2) two families of measures in BT
µ0 , we compute∣∣∣〈µ0M

(ν1)
0,t − µ0M

(ν2)
0,t

〉
f
∣∣∣ ⩽ ∥f∥∞

∫
X

∣∣∣∣e∫ t

0 Σ[ν1
s ] − e

∫ t

0 Σ[ν2
s ]ds

∣∣∣∣ dµ0

⩽ ∥f∥∞enT
∫

X

∫ t

0

∣∣∣Σ[ν1
s ] − Σ[ν2

s ]
∣∣∣ ds dµ0

by the mean value inequality and the uniform boundedness from above Hypothesis (2.2). Using
Assumption (1.3) and taking the supremum in t over [0, T ], we obtain

sup
t∈[0,T ]

∥∥∥µ0M
(ν1)
0,t − µ0M

(ν2)
0,t

∥∥∥
T V

⩽ k(2∥µ0∥T V )T enT ∥µ0∥T V sup
t∈[0,T ]

∥ν1
t − ν2

t ∥T V

with k(2∥µ0∥T V ) coming from the fact that (ν1) and (ν2) both lie in BT
µ0 . This means that Γ is

a contraction for a final time T1 small enough, and thus admits a unique fixed point on [0, T1].
We denote (µt)0⩽t⩽T1 this family.
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Now, we extend the result to any finite time. A classical way to proceed would be to iterate
the previous construction on successive time intervals [T, 2T ], [2T, 3T ]. . . changing each time
the initial datum by the final measure of the previous iteration. However, in the case under
study, the contraction constant depends on the total variation norm of the initial measure, so
the finite time is likely to change at each iteration. At each step, the fixed point theorem is
applied in B

Tj+1
µTj

, so for every integer j, the final time Tj is smaller than (log 2)/n and the “sum
of intermediate final times”

N∑
i=0

Tj (2.4)

does not trivially go to infinity as N → ∞. Our goal now is to prove that under the assumptions
of the lemma, this property is actually true. The mentionned iteration procedure gives, for each
integer j ⩾ 1

∥µTj+1∥T V ⩽ enTj+1∥µTj ∥T V ⩽ en(T1+···+Tj+1)∥µ0∥T V . (2.5)
With the previous computations, for all j ∈ N, in order to apply the fixed point theorem, the
final time Tj+1 shall satisfy

k(2∥µTj ∥T V )Tj+1enTj+1∥µTj ∥T V < 1,

that we rewrite as
h(Tj+1) <

1
∥µTj ∥T V k(2∥µTj ∥T V ) .

Since h is a non-negative strictly increasing function from [0, ∞) to itself, we can define for all
j ∈ N

xj := h−1
(

1
∥µTj ∥T V k(2∥µTj ∥T V )

)
> 0.

If the sequence (xj)j∈N does not converge to 0, then we define Tj+1 := xj

2 and the series (2.4)
diverges. If the opposite is true, then we deduce from the definition of xj that
∥µTj ∥T V k(2∥µTj ∥T V ) → ∞ as j → ∞. Since the function k is locally bounded, we deduce
that the divergence is actually true for ∥µTj ∥T V , and finally using the estimate (2.5) the series
(2.4) diverges in this case too. In both cases, we can extend the family (µ) to any finite time.

It is easy to see from (2.3) that the support of µt is included in that of µ0. The converse
inclusion is not necessarily true, since it is not forbiden that the function Σ[µ] takes the value
−∞ inside the domain X. □

We are now ready to state the proof of Theorem 1.2. It relies on the truncation of the
unbounded operator Σ and on the previous lemma.

Proof of Theorem 1.2. Let T > 0 and Σ satisfying Assumptions (1.3) and (1.4). For all n ∈ N∗,
we define the truncation Σn[µ] = min(Σ[µ], n), i.e.

Σn[µ](x) =
{

Σ[µ](x) if Σ[µ](x) ⩽ n

n otherwise

and denote Γn
µ0 the associated operator. We also denote (µn

t )0⩽t⩽T the unique fixed-point of
this operator in C([0, T ]; M(X)), provided by the previous lemma. We show that this sequence
remains bounded as n → ∞. Fix t ∈ [0, T ]. We show that for any n ∈ N, the family (µn) is a
solution of the equation (1.2) with initial condition µ0 and Σn instead of Σ. To this end, consider
the function ϕn(t, x) defined by

ϕn(t, x) =

e
∫ t

0 Σn[µn
σ ](x)dσ if x ∈ supp µ0

0 otherwise.
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For almost all x ∈ X and all t ∈ [0, T ] and n ∈ N, the function t 7→ ϕn(t, x) is differentiable and
its derivative satisfies

|∂tϕn(t, x)| =
∣∣∣∣Σ[µn

t ](x)e
∫ t

0 Σ[µn
s ](x)ds

∣∣∣∣ ⩽ nenT .

By Leibniz integral rule, the function t 7→ ⟨µn
t , f⟩ is differentiable for every f ∈ B(X) and one

has
d
dt

⟨µn
t , f⟩ = ⟨µn

t , Σn[µn
t ]f⟩. (2.6)

Thanks to Equations (2.1) and (2.3), we easily see that if µ0 is non negative, so is µn
t for all

t ∈ [0, T ] and n ∈ N. With this observation, the definition of Σn and Assumption (1.4) we obtain
d
dt

∥µn
t ∥T V = ⟨µn

t , Σ[µn
t ]⟩ + ⟨µn

t , Σn[µn
t ] − Σ[µn

t ]︸ ︷︷ ︸
⩽0

⟩ ⩽ F∥µn
t ∥T V

and finally thanks to Grönwall’s lemma

∥µn
t ∥T V ⩽ ∥µ0∥T V eF t

so the sequence (∥µn
t ∥T V )n∈N is bounded for any t > 0.

Now, we show that this sequence (µn
t )0⩽t⩽T is actually constant from a certain rank, thus

providing a family of measures (µ∞
t )0⩽t⩽T that is its strong limit.

The previous computations shows that for a fixed t ⩾ 0, the sequence of measures (µn
t )n∈N

is uniformly bounded in total variation norm by ∥µ0∥T V eF t. Thus we can bound the family of
functions (Σ[µn

t ])n∈N uniformly on N by
(
∥µ0∥T V eF t

)
k(∥µ0∥T V eF t)+∥Σ[0]∥∞. Indeed, applying

Assumption (1.3) on the couple of measures (µ, 0), we obtain

∥Σ[µ] − Σ[0]∥∞ ⩽ k (∥µ∥T V ) ∥µ∥T V

and then
∥Σ[µ]∥∞ ⩽ k (∥µ∥T V ) ∥µ∥T V + ∥Σ[0]∥∞.

We deduce that

∀ n ⩾
(
∥µ0∥T V eF t

)
k(∥µ0∥T V eF t) + ∥Σ[0]∥∞ ∀ s ∈ [0, t], Σn[µn

s ] = Σ[µn
s ].

So for n large enough, familiar computations provide

∥µn+p
t − µn

t ∥T V ⩽ e((∥µ0∥T V eF t)k(∥µ0∥T V eF t)+∥Σ[0]∥∞)t∥µ0∥T V k(∥µ0∥T V eF t)
∫ t

0
∥µn+p

s − µn
s ∥T V ds

and finally Grönwall lemma provides the claimed result. Now we prove that the family of mea-
sures (µ∞

t )0⩽t⩽T is a measure solution in the sense of Definition 1.1. Integrating Equation (2.6)
in time with n large enough, we obtain

⟨µn
t , f⟩ = ⟨µ0, f⟩ +

∫ t

0
⟨µn

s , Σ[µn
s ]f⟩ ds.

Since we proved that limn→∞ ∥µn
t − µ∞

t ∥T V = 0, the left handside converges towards ⟨µ∞
t , f⟩. It

remains to prove that
⟨µn

s , Σ[µn
s ]f⟩ −→ ⟨µ∞

s , Σ[µ∞
s ]f⟩

for every s ∈ [0, T ] and f ∈ B(X). This is done by writing

|⟨µn
s , Σ[µn

s ]f⟩ − ⟨µ∞
s , Σ[µ∞

s ]f⟩| ⩽ |⟨µn
s − µ∞

s , Σ[µn
s ]f⟩| + |⟨µ∞

s , Σ[µn
s ]f − Σ[µ∞

s ]f⟩|

⩽∥f∥∞
(
2k
(
∥µ0∥T V eF t

)
∥µ0∥T V eF t + ∥Σ[0]∥∞

)
∥µn

s − µ∞
s ∥T V

thanks to some estimates previously established. The continuity of t 7→ ⟨µt, f⟩ for any function
f is a straightforward consequence of Assumption (1.4).

161



Hugo Martin

Now we prove the stability result. Let µ1
0 and µ2

0 two nonnegative measures on X and de-
note µ1

t and µ2
t the corresponding solution at time t ∈ [0, T ], respectively, thus both satisfying

Equation (1.2), for an arbitrary final time T > 0. Then for f ∈ B(X), one has

|µ1
t f − µ2

t f | ⩽ |µ1
0f − µ2

0f | +
∫ t

0
⟨µ1

s,
∣∣∣(Σ[µ1

s] − Σ[µ2
s]
)

f
∣∣∣⟩ +

∣∣∣⟨µ1
s − µ2

s, Σ[µ2
s]f⟩

∣∣∣ ds

⩽ ∥f∥∞

(
∥µ1

0 − µ2
0∥T V + L(T )

∫ t

0
∥µ1

s − µ2
s∥T V

)
with

L(T ) := 2 sup
t∈[0,T ]

(
(∥µ1

0∥T V + ∥µ2
0∥T V )eF tk((∥µ1

0∥T V + ∥µ2
0∥T V )eF t) + ∥Σ[0]∥∞

)
and finally by Grönwall’s lemma provide the claimed inequality. This stability result provides
the uniqueness of the solution. Finally, the claim on the support of µt comes from the one from
Lemma 2.1, but supplemented with the boundedness in supremum norm of Σ[µ], that fordids
extinction of a trait in finite time. Thus, if supp µ0 ̸= ∅, then ∥µt∥T V > 0 for any t > 0. The
proof of the final claim in large time is postponed to the next section. □

3. Various asymptotic behaviours

In this section, we give a sufficient condition of non extinction and provide some examples of
selection operators to illustrate different dynamics encompassed by our assumptions.

3.1. A sufficient condition for non extinction

Our rather general assumptions allows various dynamics to occur. For example, a system studied
in [40] might be rewritten X = x0, x1, x2, and

Σ[µ](xi) = 1 − µ({xi}) − 2µ({xi+1}) (3.1)
with indices in Z/3Z and we easily check that such function satisfies Hypotheses (1.3) and (1.4)
with

∥Σ[µ1] − Σ[µ2]∥∞ ⩽ 2∥µ1 − µ2∥T V and ⟨µ, Σ[µ]⟩ = ∥µ∥T V (1 − ∥µ∥T V ) ⩽ ∥µ∥T V .

This system displays a periodic behaviour, as proved in the original paper. Otherwise, the
solution to equation (1.2) can either go extinct, converge to an equilibrium or display a chaotic
behaviour. Since this last option is not really considered, we have to decide between the two
first possibilities. This is the purpose of the following lemma.

Lemma 3.1. Assume the selection operator satisfies Hypotheses (1.3) and (1.4). Let µ0 be an
initial condition satisfying Assumption (1.5), and denote (µt)t⩾0 the unique measure solution
to (1.1) with initial condition µ0. If

µt
T V−−−→

t→∞
µ,

then µ ̸= 0.

Proof. Assume by contradiction that µ = 0. Then for all ε > 0, there exists T > 0 such that for
all t ⩾ T , one has ∥µt∥T V < ε. Fix η > 0 as small as needed. Thanks to Hypothesis (1.5), there
exists A ⊂ {Σ[0] > 0} with µ0(A) > 0 and for all x ∈ A, Σ[0](x) > η. With Hypotheses (1.3),
one has for all t ⩾ T

∥Σ[µt] − Σ[0]∥∞ ⩽ εk(ε),
thus, for all x ∈ A, one has the estimate

Σ[µt](x) > η − εk(ε) >
η

2
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for ε small enough, i.e. T large enough. This provides a contradiction once it is noted that

ε > ∥µt∥T V ⩾
∫

A
e
∫ t

0 Σ[µs]dsdµ0 ⩾ CT

∫
A

e
∫ t

T
Σ[µs]dsdµ0 > CT e

η
2 (t−T )µ0(A)

with CT a positive constant, for all t ⩾ T . □

3.2. Cannibalism revisited

In this section, we borrow an example from [41]. In this example, the trait x lies in X = [0, ∞)
and represent the degree of cannibalism. For a measure µ that have both finite zeroth and first
moment, the selection operator is

Σ[µ](x) = r + αxµ(X) − ⟨µ, Id⟩ (3.2)
with r the growth rate in the absence of cannibalism and α ∈ (0, 1] the efficiency in offspring
production from intraspecific predation. As noted in this book, unbounded levels of predation
seem very unrealistic, so one can consider the trait instead in a compact set [0, A] with A > 0.
This hypothesis is even necessary in the present paper, since otherwise the operator Σ[µ] does
not lie in L∞. In this setting, we recover the result presented in the book.

Proposition 3.2. There is a unique global positive measure solution (µt)t⩾0 to the equation given
by the selection operator (3.2). In addition, if M := sup supp µ0 ∈ supp µ0, and ⟨µ0, Id⟩ ⩽ r

1−α ,
one has the asymptotic concentration on the trait M , i.e.

lim
t→∞

µt = r

M(1 − α)δM .

Proof. First, we easily see that the operator given by (3.2) satisfies the assumptions of Theo-
rem 1.2, since X is bounded. Indeed, one has

∀ µ ⩾ 0, ⟨µ, Σ[µ]⟩ = rµ(X) − (1 − α)µ(X)⟨µ, Id⟩ ⩽ rµ(X)
and

∀ µ, ν, ∥Σ[µ] − Σ[ν]∥∞ ⩽ (1 + α)A∥µ − ν∥T V .

Without loss of generality, we choose a family of measures solutions (µt)t⩾0 such that µ0(X) = 1.
Throughout the proof, we will use a rescaled family of measures defined by

νt := e−
∫ t

0 (r−(1−α)⟨µs,Id⟩)dsµt (3.3)
and easily check that it satisfies

⟨νt, f⟩ = ⟨µt, f⟩
µt(X)

so for all t ⩾ 0, νt is a probability measure on X. In addition, for all t ⩾ 0 and f ∈ B(X) one
has

⟨νt, f⟩ = ⟨µ0, f⟩ +
∫ t

0
⟨νs, α (µs(X) Id −⟨µt, Id⟩) f⟩.

We have the inequality
µt(X)⟨µt, Id2⟩ = µt(X)2⟨νt, Id2⟩ ⩾ µt(X)2⟨νt, Id⟩2 = ⟨µt, Id⟩2

using Jensen’s inequality. Now using this inequality, we compute
d
dt

⟨µt, Id⟩ =
(
r⟨µt, Id⟩ + αµt(X)⟨µt, Id2⟩ − ⟨µt, Id⟩2

)
⩾ ⟨µt, Id⟩ (r − (1 − α)⟨µt, Id⟩) . (3.4)

Assume by contradiction that
lim

t→∞
⟨µt, Id⟩ = 0.
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Fix ε > 0. There exists t0 > 0 such that for all t ⩾ t0, one has ⟨µt, Id⟩ ⩽ ε. Integrating (3.4) for
t ⩾ t0, one has

⟨µt, Id⟩ ⩾ ⟨µ0, Id⟩Ceε(t−t0)

with C a positive constant, yielding a contradiction. Now we compute
d
dt

(r − (1 − α)⟨µt, Id⟩) = −(1 − α)
(
r⟨µt, Id⟩ + αµt(X)⟨µt, Id2⟩ − ⟨µt, Id⟩2

)
⩽ −(1 − α)⟨µt, Id⟩ (r − (1 − α)⟨µt, Id⟩) .

and Grönwall’s lemma yields

r − (1 − α)⟨µt, Id⟩ ⩽ (r − (1 − α)⟨µ0, Id⟩)e−(1−α)
∫ t

0 ⟨µs,Id⟩ds. (3.5)
In addition, since ⟨µt, Id⟩ does not vanish, one has

e−(1−α)
∫ t

0 ⟨µs,Id⟩ds ⩽ e−(1−α)εt

for some ε > 0. Since by assumption ⟨µ0, Id⟩ ⩽ r
1−α , the last inequality combined with (3.5)

provides
lim

t→∞
r − (1 − α)⟨µt, Id⟩ ⩽ 0.

Assume by contradiction that this limit is negative. Since t 7→ r − (1 − α)⟨µt, Id⟩ is continuous,
there exists ε > 0 and t0 > such that for all t ⩾ t0, one has

r − (1 − α)⟨µt, Id⟩ ⩽ −ε < 0.

For t ⩾ t0, one has
µt(X) = e

∫ t

0 (r−(1−α)⟨µs,Id⟩)ds ⩽ Ce−ε(t−t0)

with C a positive constant. Thus, for such t, one has
⟨µt, Id⟩ ⩽ Mµt(X) ⩽ MCe−ε(t−t0)

and finally
r − (1 − α)⟨µt, Id⟩ ⩾ r − (1 − α)MCe−εt > 0

for t large enough, yielding a contradiction. Finally, we obtain

lim
t→∞

⟨µt, Id⟩ = r

1 − α
, (3.6)

from which we also deduce that t 7→ µt(X) does not vanish. Now we prove that the variance of
the measures (νt)t⩾0 vanishes. To obtain this property, we write

⟨νt, Id⟩ = ⟨µ0, Id⟩ +
∫ t

0
⟨νs, α

(
µs(X) Id2 −⟨µt, Id⟩ Id

)
⟩

= ⟨µ0, Id⟩ + α

∫ t

0
µs(X)⟨νs, Id2⟩ − ⟨µs, Id⟩⟨νs, Id⟩ds

= ⟨µ0, Id⟩ + α

∫ t

0
µs(X)

[
⟨νs, Id2⟩ − ⟨νs, Id⟩2

]
ds

and Jensen’s inequality again ensures that the integrand is non negative. Since every other term
is also non negative and ⟨νt, Id⟩ ⩽ M , the integral on the right handside is finite, and thus the
variance of (νt)t⩾0 vanishes. Since νt does not vanish, it means that this family of measures
concentrates on some point x∗ ∈ [0, A], and so does µt. Now assume by contradiction that
x∗ < M . Then one can find a positive number η < M − x∗. We compute

d
dt

νt([M − η, M ]) = α⟨νt, (Id µt(X) − ⟨µt, Id⟩)1[M−η,M ]⟩

⩾ αµt(X) ((M − η − ⟨νt, Id⟩) νt([M − η, M ])
⩾ αm ((M − η − x∗) νt([M − η, M ])
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Figure 3.1. Top left: the initial distribution is given by the sum of a Beta dis-
tribution with parameters 2 and 6 and a constant, namely x 7→ β(2,6)(x) + 0.1.
Bottom left: the distribution at time T = 40. Top right: purple: total popu-
lation at the discretization times, red: the function t 7→ r/(M(1 − α)) = 15.
Bottom right: L1 discrepancy between the total population at time t and the
r/(M(1 − α)) = 15.

since t 7→ ⟨νt, Id⟩ is increasing, with 0 < m ⩽ µt(X). This provides

νt([M − η, M ]) ⩾ ν0([M − η, M ])eαm(M−η−x∗)t

which is a contradiction, so one has
νt ⇀t→∞ δM . (3.7)

Finally, we combine (3.3) (3.6) and (3.7), to obtain that

lim
t→∞

µt(X) = lim
t→∞

e
∫ t

0 (r−(1−α)⟨µs,Id⟩)ds = r

M(1 − α)

which ends the proof. □

The properties highlighted in the previous proposition are illustrated in Figure 3.1, with
parameters r = 3, α = 0.8 and M = 1.

With notations closer to the ones used in [26], the selection operator would be

Σ[µ](x) = r −
∫

X
(y − αx) dµ(y)

which does not satisfy the assumptions required for existence in their paper, but does satisfy
the one from the present paper. As stated earlier, the total variation norm is not well suited
for cases in which concentration occurs. The purpose of the three next subsections is to provide
example of such favorable cases for this norm.
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3.3. A distribution without singular part

In this section, we consider a selection operator given by

Σ[µ](x) = a(x) −
∫

X
J(x − y) dµ(y)

defined on X = R, with

a(x) = (1 + |x|)e−|x|

4 and the kernel J(x) = e−|x|

2 .

This operator Σ satisfies the assumptions of the existence section. Indeed, one has

∀ µ ⩾ 0, ⟨µ, Σ[µ]⟩ = ⟨µ, a⟩ −
∫

X
J(x − y) dµ(y) dµ(x) ⩽ µ(X)

and
∀ µ, ν, ∥Σ[µ] − Σ[ν]∥∞ ⩽

1
2∥µ − ν∥T V .

It has to be noted that a = J ∗ J with ∗ being the convolution operator. In the L1 context, a
steady state u would satisfy

(a(x) − J ∗ u(x)) u(x) = 0
almost everywhere, and we are interested in positive solutions. Applying the Fourrier transform,
such positive steady state would satisfy

Ĵ(ξ)
(
Ĵ(ξ) − û(ξ)

)
= 0

so a natural candidate for a steady state is the kernel J itself.
We perform numerical tests on a truncated version of the problem, namely

X = [−h, h], Jh(x) = e−|x|

2(1 − e−h)1(−h,h) and ah(x) = (1 + |x|)e−|x| − e−2h cosh(x)
4(1 − e−h)2 .

For various initial conditions, the distribution seems to converge towards Jh, see Figure 3.2 for an
example. In this subsection and the next, the numerical method used is a standard semi-implicit
Euler scheme.

The function Jh seems to be a stable steady state. In a measure setting, we can expect a
convergence in total variation norm, but rather slowly.

3.4. Trait-structured preys-predators

In the previous subsection, we provided an ad hoc example of operator such that the solutions
converges towards an equilibrium without singular part which is stable with respect to the initial
condition. In this one, we give an example which is more biologically grounded, that also seems
to converge towards a measure that has a density with respect to the Lebesgue measure. To this
end, we consider the trait space X = [0, 1] and a selection operator given by

Σ[µ](x) = a(x) + Aµ([x − η, x) ∩ X) − Bµ([x, x + η) ∩ X)
with positive constants A and B. This function intends to model a preys-predators type inter-
action with trait x being interpreted as the position in the food chain. Each individual can be
both prey for and predator depending on the value of its trait x. In addition, the function a is
taken decreasing, to model the ability for smaller species to proliferate faster. More precisely,
in the simulation, we take a(x) = 1 − 1.5

√
x, A = 0.8, B = 0.7 and η = 0.51. In this setting,

the selection operator satisfies Assumption (1.3) with k(r) = A + B, but it is unclear if it also
satisfies Assumption (1.4). We performed the simulations anyway and obtained Figure 3.3. We
note that with these parameters, the asymptotic measure seems to have no singular part. In
addition, we note first that with the predation phenomenon, a population with nonnegative pro-
liferation rate can survive, and second that dumped oscillation in the total population occurs,

166



Measure solutions for the selection equation

Figure 3.2. Top left: the initial distribution is given by x 7→ β(2,5)
(

x+h
2h

)
, with

β(2,5) a Beta distribution with parameters 2 and 5. Bottom left: blue: the distribu-
tion at time T = 2000, green: the function Jh. Top right: purple: total population
at the discretization times, red: the function t 7→ 1. Bottom right: purple: L1 dis-
crepancy between the solution and the fonction Jh. Red: the function t 7→ t− 1

2 .

which is reminiscent of the classical preys-predators system. In the notation of [26], the selection
operator would be

Σ[µ](x) = a(x) −
∫ 1

0
B1[x,x+η)∩[0,1](y) − A1[x−η,x)∩[0,1](y)

which does not satisfies their assumptions for existence.

3.5. Convergence in total variation norm with a uniform competition for ressources

In this subsection, we consider a famous particular model for the selection equation, given by
the selection operator

Σ[µ](x) = r(x) − µ(X) (3.8)
with X an arbitrary compact set, say [0, 1]. This equation has been studied in [41] when r has a
single maximum, and in [39] when different species can coexist asymptotically, see also [42] for
global stability. Here, we consider plateau growth rates r, in the sense that the maximum is not
reached on a discrete set. More precisely, we require

r : X −→ (0, ∞), max
x∈X

r(x) =: rM , min
x∈X

r(x) =: rm > 0 (3.9)

and
inf
y ̸∈S

rM − r(y) =: η > 0 (3.10)

in which we denote
S := argmax(r).
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Figure 3.3. Top left: the initial distribution is a Beta distribution with param-
eters 2 and 3 x 7→ β(2,3)(x). Bottom left: the distribution at time T = 10000. Top
right: total population at the discretization times. Bottom right: L1 discrepancy
between two successive discretized solution.

We require the initial measure µ to be finite and that a subset of S is included in its support

Sµ := supp µ ∩ S ≠ ∅. (3.11)

We also need the hypothesis

1Sµ : f 7−→ ⟨µ, f1S⟩ is absolutely continuous w.r.t. the Lebesgue measure L (3.12)

and finally
L(Sµ) > 0. (3.13)

Under these assumptions, we do not observe the usual concentration on a discrete set, but the
dynamics rather selects the traits in Sµ, as stated in the following proposition.

Proposition 3.3. Under Assumptions (3.9), (3.10), (3.11), (3.12) and (3.13), the measure so-
lution (µt)t⩾0 associated with the operator (3.8) satisfies∥∥∥∥µt − e

∫∞
0 rM −µs(X)ds

1Sµ

∥∥∥∥
T V

⩽ C1(µ, r)e− η
2 t∥µ − 1Sµ∥T V

+ C2(µ, r)e−ηt + C3(µ, r)e−rM t∥r − µ0(X)∥∞

with C1(µ, r), C2(µ, r) and C3(µ, r) constants depending on the initial condition and the growth
rate r.

The result is achieved by combining the two following lemmas. The first one states that the
dynamics selects the traits that lies in Sµ, and the second deals with the asymptotic behaviour
of the total population.
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Lemma 3.4. Under the same assumptions as in Proposition 3.3, one has∥∥∥∥µt − e
∫ t

0 rM −µs(X)ds
1Sµ

∥∥∥∥
T V

⩽ C1(µ, r)e− η
2 t∥µ − 1Sµ∥T V .

Proof. We first consider the dual problem, namely a classical solution f of
∂tf(t, x) = (r(x) − µt(X))f(t, x)

with initial condition f0. A solution can be writen

f(t, x) = e
∫ t

0 (r(x)−µs(X))dsf0(x).
Let us consider g be the classical solution of the related problem

∂tg(t, x) = (r(x) − rM )g(t, x)
with initial condition f0. We can express g as

g(t, x) = e(r(x)−rM )tf0(x)
and its relation to f by

f(t, x) = e
∫ t

0 (rM −µs(X))dsg(t, x).
Thanks to Assumptions (3.9) and (3.10), one has for all t ⩾ 0 and x ∈ X

|g(t, x) − 1S(x)f0(x)| ⩽ e−ηt|f0(x) − 1S(x)f0(x)|
so we obtain∣∣∣∣f(t, x) − e

∫ t

0 (rM −µs(X))ds
1S(x)f0(x)

∣∣∣∣ ⩽ e
∫ t

0 (rM −µs(X)−η)ds|f0(x) − 1S(x)f0(x)|.

It is proved in [39] that µt(X) → rM , so there exists t0 ⩾ 0 such that for all t ⩾ t0, one has

|rM − µt(X)| ⩽ η

2 ,

from which we deduce∣∣∣∣f(t, x) − e
∫ t

0 (rM −µs(X))ds
1S(x)f0(x)

∣∣∣∣ ⩽ e(rM − η
2 )t0e− η

2 t|f0(x) − 1S(x)f0(x)|.

Using Assumptions (3.12) and (3.13), we can take the dual inequality in total variation norm,
which ends the proof. □

Now we provide a control of the discrepancy between

t 7−→ e
∫ t

0 rM −µs(X)ds

and its final value.

Lemma 3.5. Under Assumptions (3.9) and (3.10), the function t 7→ rM −µt(X) lies in L1(0, ∞)
and for all t ⩾ 0, one has∣∣∣∣e∫ t

0 rM −µs(X)ds − e
∫∞

0 rM −µs(X)ds
∣∣∣∣

⩽
η

rm min
(
1, µ0(S)

rM

)e−ηt + RM

rm min
(
1, µ0(S)

rM

)e−rM t∥r − µ0(X)∥∞.

Proof. Drawing inspiration from [39], one has

µt(X) =

〈
µ0, er( · )t

〉
1 +

〈
µ0, er( · )t−1

r

〉
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so

rM − µt(X) =

〈
µ0,

( rM
r − 1

)
er( · )t

〉
1 +

〈
µ0, er( · )t−1

r

〉 +
rM −

〈
µ0, rM

r

〉
1 +

〈
µ0, er( · )t−1

r

〉 .

To estimate these terms, we first notice that

1 +
〈

µ0,
er( · )t − 1

r

〉
⩾ 1 + erM t − 1

rM
µ0(S) ⩾ min

(
1,

µ0(S)
rM

)
erM t.

Then, one has 〈
µ0,

(
rM

r
− 1

)
er( · )t

〉
=
∫

Sc ∩ supp µ0

(
rM

r(y) − 1
)

er(y)tdµ0(y)

⩽
η

rm
e(rM −η)t

so the first term, which is non negative, is controlled by〈
µ0,

( rM
r − 1

)
er( · )t

〉
1 +

〈
µ0, er( · )t−1

r

〉 ⩽
η

rm min
(
1, µ0(S)

rM

)e−ηt.

For the second, we write∣∣∣∣rM −
〈

µ0,
rM

r

〉∣∣∣∣ =
∣∣∣∣〈µ0, rM

( 1
µ0(X) − 1

r

)〉∣∣∣∣ ⩽ RM

rm
∥r − µ0(X)∥∞

so finally ∣∣∣∣∣∣ rM −
〈
µ0, rM

r

〉
1 +

〈
µ0, er( · )t−1

r

〉
∣∣∣∣∣∣ ⩽ RM

rm min
(
1, µ0(S)

rM

)e−rM t∥r − µ0(X)∥∞

and the proof is complete. □

4. Discussion

In this work, we have studied the classic pure selection equation in the framework of measures.
It enables to obtain well posedness of a global solution for fairly general assumptions, as well as
a sufficient hypothesis for the persistence of the population that is readily interpreted. Then, we
explored various classes of selection operator, both theoretically and numerically, and obtained
different kinds of behaviours.

All our theoretical study took place in the context of the topology of the total variation.
Although this norm might seem “rigid” for models stemming from adaptative dynamics, in which
convergence towards Dirac deltas can occur, the examples we studied highlighted that under
some particular assumptions, convergence in total variation norm is possible, even exponentially
fast. Such decay estimates are, up to our knowledge, new for the selection equation. One possible
continuation of this work would be to obtain such decay estimates in bounded Lipschitz norm,
more suited for cases in which concentration happens. In particular, the case of subsection 3.2
displays numerically a very fast convergence towards a Dirac mass, so it would be no surprise if
an exponential decay could be proved.

The examples we presented displayed various behaviours. In their paper mentionned ear-
lier [40], the authors highlighted sustained oscillation in a simple ODE system. One might
wonder if it is possible to exhibit a continous version of their model, in which their would be a
continuum of traits instead of three separate ones. Another way to obtain oscillations would be
to include a periodic term in the selection operator, in the fashion of [14].
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