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Abstract

In this paper, we introduce a type switching mechanism for the Contact Process. That is, we allow
the individual particles/sites to switch between two (or more) types independently of one another, and
the different types may exhibit specific infection and recovery dynamics. Such type switches can e.g. be
motivated from biology, where “phenotypic switching” is common among micro-organisms. Our framework
includes as special cases systems with switches between “active” and “dormant” states (the Contact Process
with dormancy, CPD), and the Contact Process in a randomly evolving environment (CPREE) introduced by
Broman (2007). The “standard” multi-type Contact Process (without type-switching) can also be recovered
as a limiting case.

After constructing the process from a graphical representation, we first establish basic properties that are
mostly analogous to the classical Contact Process. We then provide couplings between several variants of
the system, obtaining sufficient conditions for the existence of a phase transition. Further, we investigate the
effect of the switching parameters on the critical value of the system by providing rigorous bounds obtained
from the coupling arguments as well as numerical and heuristic results. Finally, we investigate scaling limits
for the process as the switching parameters tend to 0 (slow switching regime) resp. ∞ (fast switching regime).
We conclude with a brief discussion of further model variants and questions for future research.

1. The Contact Process with Switching

1.1. Model description

We introduce the Contact Process with switching (CPS) as a continuous-time Markov process on
the grid S := Zd as follows. At each time t ≥ 0, the state of the process is a function ξt : Zd → F ,
where

F := {(0, a), (0, d), (1, a), (1, d)}

describes the possible states of the individuals at each grid point. (We call this the map-based
representation.) The first component of an element from F indicates whether the corresponding
site (or “particle”) is infected (“1”) or healthy (“0”), and the second component refers to the
type of the particle (say, “a” or “d”). The dynamics is as follows: Independently of all other
particles an infected particle of type a (resp. d) recovers with rate δa (resp. δd), and any infected
particle of type τ1 ∈ {a, d} infects a healthy neighbour of type τ2 ∈ {a, d} at rate λτ1τ2 ≥ 0.
Finally, healthy type a particles switch into type d at rate σ0, and from d to a at rate ρ0 (with
similar rates σ1 and ρ1 for the infected individuals). See Figure 1.1 for a visualization of these
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transition rates at a given site x, where we define

n1,a(x, ξ) := |{z ∈ N : ξ(x + z) = (1, a)}|

as the number of infected type a individuals in the (finite) neighbourhood of x given by N ⊂ Zd,
and correspondingly,

n1,d(x, ξ) := |{z ∈ N : ξ(x + z) = (1, d)}|

for the number of infected neighbours of x of type d.
For simplicity, we restrict ourselves here to finite neighbourhoods N , so that the CPS {ξt} can

readily be constructed e.g. from a graphical representation (see Section 2.1 for details). Further,
we assume σ0 = σ1 = σ and ρ0 = ρ1 = ρ unless stated otherwise.

(0, a) (1, a)

(0, d) (1, d)

λaan(1,a)(x, ξ) + λdan(1,d)(x, ξ)

λadn(1,a)(x, ξ) + λddn(1,d)(x, ξ)

δa

δd

σ0ρ0 σ1ρ1

Figure 1.1. Flip rates of the Contact Process with switching (CPS).

Finally, note that one could also work on more general graphs S than just Zd, e.g. infinite
regular trees. However, for notational convenience we restrict our results to integer lattices.

The above abstract type switching mechanism can be motivated for example by phenotypic
switches, which in a microbial context may result from stochastic or responsive changes of cell
properties. Phenotypic switching mechanisms come in many different forms and are ubiquitous
in bacterial communities, where they foster persistence and coexistence, cf. e.g. [2, 18, 19]. They
are also exhibited by cancer cells, e.g. in response to immunotherapy [1, 10], where they can
contribute to treatment failure. In ecology, in the presence of fluctuating environments, such
switching mechanisms can act as efficient bet-hedging strategies, contributing to the long term
survival of populations. Mathematically, such strategies have recently been investigated e.g. in
branching process based models [4, 9]. In these papers, optimal switching mechanisms, depending
on the distribution of the random environment, have been established.

The special case of microbial dormancy [17] may be seen as drastic form of such a type switch,
where micro-organisms enter reversible states with low or vanishing metabolic activity. In such a
dormant stage, the individual is shielded form adverse environmental conditions, but potentially
also from anti-microbial treatment [11], or from intra- and inter-species competition [5]. Recently,
dormancy has also been investigated as an efficient host-strategy to curb virus epidemics, cf.
e.g. [6, 14].

Yet, in classical interacting particle systems, type switches or dormancy seem to be rather
new concepts. To gain an understanding, in idealized scenarios, of the benefits for survival of
populations exhibiting type switching, and in particular dormancy, motivated the present study.
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1.2. Special cases

Obviously, a first special case of the CPS model is given by the classical Contact Process, denoted
by CP, with parameters λ and δ chosen as

λaa = λad = λdd = λda = λ and δa = δd = δ.

A second special case can be obtained from choosing

λaa = λ, and λad = λda = λdd = 0.

This process, in which the type d particles neither infect neighbours nor get infected, will be
called the Contact Process with (host) dormancy (CPD). This special case served as motivation
for the notation a (for “active state”) and d (for “dormant state”). See Figure 1.2 (left) for a
visualization of the corresponding flip rates.

Intuitively, the incorporation of dormancy should lead to an increase of the critical infection
rate of the process (compared to the classical Contact Process), and this is indeed the case as we
will see below. However, the strength of the observed effect will depend on the particular model
parameters, and here further natural parameter choices arise. For example, if one interprets
(microbial) host dormancy as a state of vanishing metabolic activity, then this suggests that
the recovery rate δd should be close to zero (the host does not recover from an infection while
dormant). In contrast, if one considers (human) dormancy from an epidemiological point of view
as periods of reduced social contacts, then during such “dormant states”, recovery should still
be possible (while the ability to infect neighbours should be 0). Clearly, the second strategy
seems more efficient for the hosts since it allows recovery during dormancy. This intuition will
be confirmed later on (cf. Remark 3.5).

Naturally, one could also consider dormancy on the level of infectors instead of hosts. For
example, when the activity of the infector can be linked to a specific state of the host, such
as the reactivation of Herpes viruses which can be triggered by periods of stress of the host
(cf. [16]), then the CPS model could still be applicable. However, if the dormancy state of an
infector switches independently of the state of the host, this will lead to yet another model class
outside the scope of the present paper. A possible corresponding “CPID” model will briefly be
discussed in Section 4.3.

A third special case of our model is given by the Contact Process in a randomly evolving
environment (CPREE) investigated by Broman [8]. Here, only the recovery rates depend on the
type of the particle in question. Denoting by n(1)(x, ξ) the number of infected individuals in the
N -neighbourhood of x in ξ, its flip rates are given by Figure 1.2 (right).

In this model, the states a and d can be interpreted as the two states of a random environment
which evolves independently for each individual whose ability for recovery is governed by the
state of the environment, while the susceptibility for infection remains unaffected.

2. Basic properties of the Contact Process with switching

2.1. Graphical construction and self-duality

We introduce a graphical construction of the CPS, which is the key to establish several couplings
within our model and the CP. Based on this construction, we also find that the CPS has a dual
process within the same class of processes and even obtain an exact self-duality in the case
λad = λda.

The construction is a simple extension of the classical graphical representation for the basic CP
given by Harris [13] and relies on families of independent Poisson processes driving infection and
recovery events, combined with an idea from the construction of the CPREE [25] to determine
the activity states of the particles.
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(0, a) (1, a)

(0, d) (1, d)

λn(1,a)(x, ξ)

δa

δd

σ0ρ0 σ1ρ1

(0, a) (1, a)

(0, d) (1, d)

λn(1)(x, ξ)

λn(1)(x, ξ)

δa

δd

σρ σρ

Figure 1.2. Left: Flip rates of the Contact Process with dormancy (CPD).
Here, δd can be either positive or zero. Right: The Contact Process in a randomly
evolving environment (CPREE).

Recalling the map-based representation {ξt} from the introduction, note that here it will be
convenient to work with the equivalent set-based representation involving

At := {x ∈ Zd | ξt(x)2 = a},

the set of all active sites at time t, and
Xt := {x ∈ Zd | ξt(x)1 = 1},

the set of all infected sites at time t, where ξt(x)i denotes the ith component of ξt(x).
To carry out the construction, let the following families of independent Poisson Point Processes

(PPPs) be defined on a common probability space
(
Ω, F ,P

)
:

• The (potential) recovery events, given by PPPs Ua,x = {Ua,x
n , n ≥ 1}, Ud,x = {Ud,x

n ,
n ≥ 1}, for every x ∈ Zd with rates δa and δd, respectively.

• The (potential) type switching events, given by the set of PPPs V x,a→d and V x,d→a for
every x ∈ Zd with rates σ and ρ, respectively.

• The potential infection events, given by PPPs T x→y,aa, T x→y,ad, T x→y,da and T x→y,dd

for every pair of neighbours (x, y) ∈ (Zd)2 with rates λaa, λad, λda and λdd, respectively.

For convenience we denote these collections of PPPs by U , V and T , respectively.
On the space time grid Zd × [0, ∞) we draw δa’s, δd’s, σ’s or ρ’s for every arrival time in Ua,x,

Ud,x, V x,a→d or V x,d→a, respectively. A δa (or δd) at (x, t) indicates that the particle x recovers
from infection if it is infected and active (or dormant) at time t. The σ’s and ρ’s mark changes
from active to dormant and vice versa. Moreover, we draw arrows of type τ ∈ {aa, ad, da, dd}
from (x, t) to (y, t), whenever t ∈ T x→y,τ . In particular, an arrow of type aa from (x, t) to (y, t)
signifies that y gets infected by x at time t if both particles are active and x is infected. The
graphical construction is illustrated in Figure 2.1.

Now, we can construct the process of active particles, (At)t≥0, by letting Vx,t = (V x,d→a ∪
V x,a→d) ∩ [0, t], the switching times of x until time t, and writing

At :=
{

x ∈ Zd
∣∣∣Vx,t = ∅ ∧ x ∈ A0 or max(Vx,t) ∈ V x,d→a

}
,

such that a particle is active, iff either it was active in the beginning and no switching occurred
or the last switching event before t is of type d → a. Finally, this can be used to define the
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notion of infection paths similarly to [25, Definition 2.3]. Note that we desist from their notion
of active paths to avoid confusion.

For x, y ∈ Zd we say there exists an infection path from (x, t0) to (y, t1) if t0 < t1 and if
there exists a time sequence s0 = t0 < s1 < s2 < · · · < sℓ+1 = t1 with ℓ ∈ N and a sequence of
particles x0 = x, x1, x2, . . . , xℓ = y such that:

(i) For i ∈ [ℓ] there exists at time si an arrow from xi−1 to xi and the activity states of xi−1
and xi at time si match with the type of the arrow, i.e. if both particles are for example
active at time si then the arrow has to be of type aa.

(ii) For any δa at (x̃, t) ∈ {xi} × (si, si+1) it holds x̃ /∈ At.

(iii) For any δd at (x̃, t) ∈ {xi} × (si, si+1) it holds x̃ ∈ At.

Consequently, for t > 0 we define
Xt := {y ∈ Zd : for x ∈ X0 exists an infection path from (x, 0) to (y, t)},

the set of infected particles at time t. The pair (Xt, At)t now gives an explicit construction of
the CPS via the set-based representation.

To see that the process is indeed well-defined, one may consider the so-called interaction graph
of the CPS at time t, that is the graph on Zd in which two sites x, y ∈ Zd are connected by an
edge iff there exists a time s ≤ t at which there is either an arrow from x to y or from y to x.
In the same way as in [3, (2.1) Theorem] we can then find a finite time t0 > 0 such that the
interaction graph at t0 splits almost surely into clusters of finite size.

Translation invariance as well as the Feller property follow analogously to [3] (cf. (2.2) Corol-
lary and (2.3) Corollary).
Remark 2.1.

(1) To specify initial configurations of infected particles I ⊂ Zd and of active particles
A ⊂ Zd, i.e. choosing X0 = I and A0 = A, we use the notation X I,A

t and AI,A
t as well as

ξI,A
t , whereas by a probability measure in the superscript we specify initial distributions.

(2) Strictly speaking, the above defined process is left- but not right-continuous (cf. [3,
p. 127]). Nevertheless, the left- and right-continuous versions are almost surely equal at
any fixed time t because the process has only countably many jumps. Hence, if we insist
on càdlàg paths, we simply can redefine our process as the corresponding right-continuous
version.

From this graphical construction, by the usual thinning and coupling arguments, the following
basic properties can easily be established:
Theorem 2.2. Let (Xt, At)t≥0 and (X̃ t, At)t≥0 be two CPS with coupled activity states.

(1) If X0 = X̃ 0 and the respective parameters satisfy λ̃τ ≥ λτ ≥ 0 for each τ ∈ {aa, ad, da, dd}
and 0 ≤ δ̃• ≤ δ• for every • ∈ {a, d}, then there exists a coupling of (Xt) and (X̃ t) such
that

Xt ⊆ X̃ t, for all t ≥ 0. (monotonicity)

(2) If I1, I2 ⊆ Zd, then

X I1,A0
t ∪ X I2,A0

t = X I1∪I2,A0
t , for all t ≥ 0. (additivity)

(3) If I ⊆ J ⊆ Zd, then

X I,A0
t ⊆ X J,A0

t , for all t ≥ 0. (attractivity)
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As for the basic CP and the CPREE we obtain the dual process starting at a fixed time t and
letting the process run backwards in time, denoting X̂ t

s = Xt−s and Ât
s = At−s for 0 ≤ s ≤ t. By

reverting all arrows in the graphical construction of the forward-time version, one verifies that
(X̂ t

s, Ât
s)s follows almost the same dynamics as (Xs, As)s, except for the roles of ad-arrows and

da-arrows being switched. Hence, it holds:

Theorem 2.3 (Duality). The dual process of a CPS (Xt, At)t is also distributed as a CPS with
the same parameters as (Xt, At)t except for λad and λda being swapped. Consequently, if it holds
that λad = λda, then (Xt, At) is self-dual.

In particular, all special cases mentioned in the introduction are self-dual. The construction of
the dual process is also illustrated in Figure 2.1. Further, from the picture it follows immediately
that the so called duality relation holds, namely

{X I,A
t ∩ J ̸= ∅} = {X I,A

s ∩ X̂ t,J,At
s ̸= ∅} = {I ∩ X̂ t,J,At

t ̸= ∅} for all 0 ≤ s ≤ t.

CPS

time

t

1 2 3 4 5 6
individuals

ρ

σ

σ

δd

δd

δa

σ

σ

ρ

δa

ρ
σ

σ

δd

σ

ρ

ρ

δaaa

ad

aa

da

da

aa

dd

da

X I,A
t

Dual process

time

t

1 2 3 4 5 6

δd

δd

δa

δa

δd

δaaa

da

aa

ad

ad

aa

dd

ad

X̂ J,Â,t
t

Figure 2.1. CPS and the dual process. The CPS X I,A
t started with I = {2, 3}

and A = {2, 4, 5, 6} running upwards, and the dual X̂ t,J,At
s started from time t

in J = {4} and At = {2, 3, 6} running downwards. The states (0, a), (0, d), (1, a)
and (1, d) are depicted with grey solid, grey dotted, black solid and black dashed
lines, respectively.

2.2. Stationary distributions and phase transition

In what follows, we will make use of both the map-based as well as the set-based representation
for notational convenience.

Since type switches are independent of the infection and recovery dynamics, it is easy to verify
that At converges in distribution to its unique stationary distribution πα, which lets any site in
Zd be active with probability α := ρ

σ+ρ and dormant otherwise, independently of each other.
Thus,

µtriv := δ{0}Zd ⊗ πα
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is a trivial stationary distribution of (ξt). We now investigate the existence of, and convergence
into, further stationary distributions. We denote by “⇒” weak convergence with respect to
the product topology generated by the open cylinder sets. Note that the cylinder functions lie
dense in the set of continuous functions on FZd and can be written as linear combinations of
indicator functions (cf. [3, p. 103]). Hence, weak convergence is equivalent to convergence of finite
dimensional distributions, i.e. ξt ⇒ ξ∞ as t → ∞ if and only if for any m ∈ N, x1, . . . , xm ∈ Zd

and i1, . . . , im ∈ F we have

P
(
ξt(x1) = i1, . . . , ξt(xm) = im

) t→∞−−−→ P
(
ξ∞(x1) = i1, . . . , ξ∞(xm) = im

)
.

Theorem 2.4. Let (ξ1t ) be a CPS with initial distribution δ{1}Zd ⊗πα. Then, ξ1t ⇒ ξ1∞ as t → ∞,
where L(ξ1∞) is a stationary distribution of (ξt).

The proof of this theorem will be very similar to that of [3, (2.7) Theorem, p. 123] and will
make use of the following lemma (cf. [3, (2.8) Lemma, p. 123]):

Lemma 2.5. Let ξ1t as specified above, then for any sets H, A, D ⊆ Zd with A ∩ D = ∅ the
function

Φt(H, A, D) := P
(
H ⊆ (X 1

t )c
∣∣A ⊆ At, D ⊆ (At)c)

is increasing in t.

Proof. This follows from a restarting argument combined with the attractivity established in
Theorem 2.2(3): Let H, A, D ⊆ Zd with A ∩ D = ∅ and s, t > 0. Then,

Φt+s(H, A, D) = P
(
H ⊆ (X 1

t+s)c
∣∣A ⊆ At+s, D ⊆ (At+s)c)

= P
(
H ⊆ (X Xs

t )c
∣∣A ⊆ AAs

t , D ⊆ (AAs
t )c)

≥ P
(
H ⊆ (X 1

t )c
∣∣A ⊆ AAs

t , D ⊆ (AAs
t )c)

= Φt(H, A, D),

where we used stationarity of (At) in the last step. □

Proof of Theorem 2.4. We show convergence of the finite dimensional distributions (depending
on finitely many sites). For this, let m ∈ N, x1, . . . , xm ∈ Zd and i1, . . . , im ∈ F be fixed. Now,
denote by H = {xk | 1 ≤ k ≤ m, ik,1 = 0}, the set of the xk such that ik is healthy, and define
I, A, D accordingly. Then,

P
(
ξ1t (x1) = i1, . . . , ξ1t (xm) = im

)
= P(A ⊆ At) · P(D ⊆ (At)c) · P

(
H ⊆ (X 1

t )c, I ⊆ X 1
t |A ⊆ At, D ⊆ (At)c),

where the first two factors multiply to α|A|(1 − α)|D| and the third can be rewritten as a finite
sum in terms of Φt(•, A, D) using the inclusion-exclusion-formula:

P
(
H ⊆ (X 1

t )c, I ⊆ X 1
t |A ⊆ At, D ⊆ (At)c)

= Φt(H, A, D) − P
(
H ⊆ (X 1

t )c, I ̸⊆ X 1
t |A ⊆ At, D ⊆ (At)c)

= Φt(H, A, D) − P
( ⋃

x∈I

{
H ∪ {x} ⊆ (X 1

t )c}∣∣∣∣∣A ⊆ At, D ⊆ (At)c

)
= Φt(H, A, D) +

∑
J⊆I,J ̸=∅

(−1)|J |Φt(H ∪ J, A, D).

Hence, Lemma 2.5 implies the desired convergence. The stationarity of the limiting distribution
follows from the Feller property (cf. [3, (2.9) Lemma, p. 123]). □
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We refer to µtriv as the lower invariant distribution, and to µ1 := L(ξ1∞) as the upper invariant
distribution. Due to attractivity (Theorem 2.2), these provide the extreme cases of limiting dis-
tributions, starting without any or only with infected individuals respectively. Both distributions
may or may not be distinct, which gives rise to the following notions of survival.

Definition 2.6 (Survival). A CPS (ξt) is said to survive, if µ1 ̸= µtriv. Otherwise it goes extinct.

Remark 2.7 (Strong survival). By a duality argument (cf. [22, p. 36]) combined with stationarity
of (At), it can be shown that the above notion of (“infinite”) survival of the CPS is equivalent
to finite survival of the dual, i.e.

P(X̂ {0},πα

t ̸= ∅ for all t ≥ 0) > 0.

For the CP on Zd it has been shown in [22, Theorem 2.25] that this is even equivalent to the
generally more restrictive notion of strong survival, given as

P(0 ∈ X {0},πα

t infinitely often) > 0,

which can be very well interpreted as “endemic” behaviour. This result, however, is entangled
with the proof of complete convergence, i.e. the property that any stationary distribution arises
as convex combination of the lower and the upper invariant distributions(cf. [22, Theorem 2.27]).
We conjecture that both properties also hold for the CPS, but defer the proofs to future work.

Since the CPS is monotone in the parameters λaa, λad, λda, λdd, δa, δd, we can consider a
critical parameter λc

• or δc
•, for some •, separating a survival from an extinction phase in the

obvious way, while fixing all other parameters. The coupling results in Section 3.2 will give us
some bounds on the critical parameters and ensure that a phase transition can occur in suitable
cases, while there are also cases where a phase transition does not exist. See Remark 3.12 for
more details.

3. Relation between CPS and CP

In this section we pursue two different approaches to compare the CPS with the classical CP.
At first we discuss scaling limits in the switching rates. We show that for high σ and ρ the CPS
is well approximated by a CP with “effective” rates λ∗ and δ∗ that can be computed explicitly
from the model parameters, whereas for low σ and ρ the CPS is close to a CP in a static envi-
ronment. Secondly, we give rigorous couplings between the CPS and suitable CPs in Section 3.2,
establishing phase transitions. We will discuss various simulation results in Section 3.3.

3.1. Fast and slow switching limits

In this section, we will consider a rescaled CPS (ξh
t )t≥0 whose switching rates σ, ρ are replaced

by hσ and hρ, where we let h either go to ∞ or to 0, while the λ• remain fixed. (Mind the
difference between ξ1

t here and ξ1t of Theorem 2.4.)
Note that for a CP (ηt) the product measure L(ηt) ⊗ πα is for fixed t a distribution on

F S = {{0, 1} × {a, d}}Zd .

Theorem 3.1 (Fast switching). For k ∈ N let (ξk
t )t≥0 be the rescaled CPS as above, with

switching parameters σk, ρk, all other parameters fixed and initial infections and initially active
sites given by I, A ⊆ Zd respectively. Then, for each fixed t ≥ 0,

L(ξk
t ) ⇒ L(ηt) ⊗ πα

as k → ∞. Here, (ηt) is a CP with initial infections given by I, infection rate

λ∗ := α2λaa + α(1 − α)(λad + λda) + (1 − α)2λdd
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and recovery rate
δ∗ := αδa + (1 − α)δd.

Proof. As before, we show convergence of the finite-dimensional distributions of (ξk
t ), that is, of

the laws restricted to finite subsets of sites S′ ⊂ Zd, |S′| < ∞.
Via the graphical construction we couple the random states ξk

t , k ∈ N, in the following way. Let
Γ be the graphical construction of (ξ0

s )0≤s≤t restricted to the sites SΓ ⊆ Zd possibly influencing
S′, i.e. denoting x ⇝t y when there is a path (not necessarily an infection path) from (x, 0) to
(y, t)

SΓ := S′ ∪ {x ∈ Zd | ∃ y ∈ S′ : x⇝t y}.

Note that since the switching rates in this case are 0, there are no type switches present in Γ.
By a time-reversal argument, SΓ can be explored through the graphical construction: Starting
at time t with infections at S′, traversing backwards through arrows of any type and ignoring δ-
events, at time 0 we arrive at SΓ (see Figure 3.1 (left) for an illustration). Hence, the cardinality
of SΓ is stochastically dominated by a Yule Process with birth-rate

∑
• λ•. Thus, SΓ is almost

surely finite. Now, we iteratively construct (ξk+1
t ) from (ξk

t ) for k ≥ 0 by adding a new pair of
independent Poisson processes of rates σ and ρ to each line s ∈ SΓ providing additional switching
events.

There are a.s. only finitely many arrows and δ-events in Γ, say at times t1, . . . , tnΓ . Then,
the activity states (1Ati

(s))i∈[nΓ],s∈SΓ converge in distribution (conditional on Γ) as k → ∞ to
a family of independent Bernoulli-α random variables, also independent of the initial activities.
This is illustrated in Figure 3.1 (right): Increasing the rates, on any line segment (ti, ti+1] for
any site s the law of 1Ati+1

(s) approximates the stationary distribution, which is Bernoulli-α.
Hence, outside an event of vanishing probability conditioned on Γ, the infection process flowing

through the graphical construction of ξk
t on SΓ behaves as an infection flowing through Γ,

stopping at δa- and δd-events with probability α and 1 − α respectively and passing through
arrows of type aa and dd with probability α2 and (1 − α)2 and through arrows of types ad and
da with probability α(1 − α). Conditioned on Γ, this now is equal in distribution to the desired
contact process (ηt) with rates λ∗ and δ∗.

In conclusion, the conditional law of ξk
t ∩S′ given Γ converges to the conditional law of ηt ∩S′.

Finally, to eliminate the conditioning on Γ, we use dominated convergence. □

Γ

time

t

1 2 3 4 5
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δa

δd

dd

aa
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SΓ

ξk
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1 2 3 4

t1

t2

t3

t4

t5

1At1
(4)

1At2
(4)

1At3
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1At4
(4)

1At5
(4)

δa

dd

aa
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Figure 3.1. Illustration of the proof of Theorem 3.1. Left: S′ = {2}. Γ is de-
picted black, solid lines represent the exploration of SΓ starting from S′ at time t,
going backwards. Right: Graphical construction of ξk

t obtained from Γ, for large
k, by adding to each line σ-events (dots to the left) and ρ-events (dots to the
right).
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Simulations suggest that the approximation in this theorem already works rather well for
relatively low values of k (cf. Figure 3.5).

Similarly we can show that for a suitable limit h → 0, the family (ξh
t ) converges to a CP in

static environment, by which we mean that activity states are determined by A0 and remain
constant over time.

Theorem 3.2 (Slow switching). Let (ξ1/k
t ) as above, with switching parameters σ/k, ρ/k, all

other parameters fixed, and initial infections and initially active sites given by I, A ⊆ Zd respec-
tively. Then, for each fixed t ≥ 0,

L(ξ1/k
t ) ⇒ L(ξ0

t )
as k → ∞. Here, (ξ0

t ) is a CPS with switching rates ρ = σ = 0, i.e. a CP in a static environment
determined by A and initially infected individuals given by I.

Proof. This can be proved analogously to the previous theorem. Here, consider as Γ the corre-
sponding graph given by (ξ1

t ) restricted to S′, this time including switching events. Now by a
thinning argument, i.e. by deleting any σ- or ρ-event in Γ with probability k/(k + 1) indepen-
dently of each other, one iteratively obtains a graphical construction of ξ

1/(k+1)
t restricted to S′

from that of ξ
1/k
t . Since for k large enough no such events will remain in this finite graphical

construction, the result follows. □

Note that the CP in static environment has been studied comprehensively over the last
decades, cf. e.g. Bramson, Durrett and Schonmann [7] or Klein [15]. In these references the
assumption is made that the intensities λ(x, y) for the Poisson processes indicating the in-
fections from x to y are independent and identically distributed for all neighbouring pairs of
x, y ∈ Zd. However, considering the CPS-limit obtained above, this is possible only in the special
case where the infection rates do not depend on the activity state at all, i.e. when the original
CPS is a CPREE.

To the authors’ knowledge, the scaling limits of Theorems 3.1 and 3.2 have not yet been
shown for the CPREE. However, Broman conjectured that ξk

t behaves like the ordinary CP (ηt)
for large k in [8, Remark after Proposition 1.9].

Remark 3.3. Although the iid condition of [7] and [15] is not satisfied for the static version of the
CPD, one can still give conditions for survival and extinction: First of all note that the duality
of Theorem 2.3 still holds and hence, survival is equivalent to finite survival (cf. Remark 2.7).
Finite survival is heavily linked to the existence of an infinite percolation cluster containing 0Zd

in the sense that, if A0 is distributed according to πα and α is smaller than the critical value
pc for site percolation on Zd, the infection goes extinct almost surely. However, in the extreme
case of δd = 0, whenever α < 1 there is finite survival since in the event 0Zd ̸∈ A0 the particle
at 0Zd will never recover.

3.2. Couplings between CPS and the classical Contact Process

In this section we employ and extend the methods and results of [8] to construct couplings be-
tween CPS and CP. Trivial versions of these couplings can be directly obtained by monotonicity,
maximizing λ• and minimizing δ• for an upper bound and vice versa for a lower bound. One
method to improve these trivial bounds can be based on [8, Theorem 1.4]:

There, a background process (Bt) is considered, that flips between the states 0 and 1, where
flips to state 1 and 0 occur at rates γp and γ(1 − p), for fixed γ > 0, p ∈ (0, 1), respectively. On
top of that, for two independent PPPs P 0 and P 1 with rates a0 and a1, a0 ≤ a1, a point process
(Xt) is constructed by letting

Xt = {τ ∈ P j
t | j ∈ {0, 1}, Bτ = j},
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which corresponds to an inhomogeneous Poisson Process jumping at rate aBt at time t. [8,
Theorem 1.4] then shows that there is a non-trivial maximal value ā ∈ (a0, a1) such that a PPP
L of rate ā can be constructed that is dominated by (Xt) in the sense that Lt ⊆ Xt for all t.
Furthermore ā is given as an explicit function of the parameters:

ā(a0, a1, γ, p) = 1
2
(
a0 + a1 + γ −

√
(a1 − a0 − γ)2 + 4γ(1 − p)(a1 − a0)

)
. (3.1)

Unfortunately, a corresponding dominating Poisson Point Process U , with Ut ⊇ Pt for all t, is
shown to only exist in trivial cases, i.e. for rates of at least a1. Hence, in the following theorems
one rate will always correspond to the trivial bounds (λmax and δmax), while the respective other
rate (δ̄ and λ̄) will arise from (3.1).

Theorem 3.4 (Dominating CP). Let (ξt) be a CPS where the initial distribution is of the form
µ = ν ⊗ πα and define

λmax := max {λaa, λad, λda, λdd}, τ := 1{δa≥δd}σ + 1{δa<δd}ρ,

δ̄ := 1
2
(
δa + δd + ρ + σ −

√
(|δa − δd| − ρ − σ)2 + 4τ |δa − δd|

)
≥ 0.

Then (ξt) is stochastically dominated by a basic CP (ηt) with infection rate λmax and recovery
rate δ̄, i.e. we can couple the processes via the graphical construction such that for any initial
configuration of infected particles I ⊆ Zd we have

X I
t ⊆ ZI

t for all t ≥ 0,

where ZI
t denotes the set of infected particles of ηI

t .

Proof. By monotonicity (cf. Theorem 2.2) it is clear that (ξt) is dominated by another CPS (ξ̂t)
with the same δ-rates but λ̂• = λmax for all • ∈ {aa, ad, da, dd}, which is in fact a CPREE. Now,
the above theorem follows from [8, Theorem 1.6]. For completeness we provide a sketch of proof:

First assume that δa ≥ δd and hence τ = σ. Otherwise, exchange the roles of a and d (and thus
σ and ρ). For any x ∈ Zd we can regard Bt = 1At(x), P 0 = Ud,x and P 1 = Ua,x. The process
X = (Xt) constructed as above then contains any δ-event along the line of x that aligns with
the activity states of x and thus can actually affect a present infection. Now, [8, Theorem 1.4]
guarantees the existence of a PPP L(x) of rate ā(δd, δa, ρ+σ, α) = δ̄ dominated by X. (Note here
that in the case δa < δd, the last entry has to be 1 − α instead of α, since p in (3.1) denotes the
fraction of flips into the state 1 of the higher rate a1.) Using the collection of the L(x), x ∈ Zd,
as recovery-events to construct a CP gives rise to the desired process (ηt).

The non-negativity of δ̄ holds, since

(δa + δd + ρ + σ)2 = (2 min{δa, δd} + |δa − δd| + ρ + σ)2

≥ (|δa − δd| + ρ + σ)2

= (|δa − δd| − ρ − σ)2 + 4(ρ + σ)|δa − δd|. □

Remark 3.5. As mentioned in the introduction, there are two natural interpretations for the
CPD: (microbial) host dormancy with δd = 0, and social distancing interpreted as (human)
dormancy with δd = δa. Since for ρ → 0 it holds δ̄ → min{δa, δd}, one can see that Theorem 3.4
leads to significantly different bounds between these cases. Also, the fast switching approximation
from Theorem 3.1 can differ strongly for these two strategies. Indeed, in both cases the human
dormancy is favourable.

For a lower bound we now strive to apply Broman’s coupling to the infection arrows origi-
nating from a single particle, instead of to the recovery events. To account for the stochastic
dependencies between such arrows, we need to extend [8, Theorem 1.4]:
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Lemma 3.6. For k ∈ N let N1,0, . . . , Nk,0 be independent Poisson Point Processes (PPPs)
with rate λ0 and N1,1, . . . , Nk,1 independent PPPs with rate λ1 ≥ λ0 such that N i,0 is also
independent of N j,1 for all i, j ∈ [k] with i ̸= j. Further, let (Jt) be a jump process in {0, 1}
jumping to 0 at rate σ and to 1 at rate ρ, satisfying P(J0 = 1) = α. Then, there are k independent
PPPs L1, . . . , Lk with rate

λ̄(λ0, λ1, σ, ρ, k) := 1
2

(
λ1 + λ0 + ρ

k + σ
k −

√
(λ1 − λ0 − ρ

k − σ
k )2 + 4σ

k (λ1 − λ0)
)

such that almost surely for any i ∈ [k] it holds
Li ⊆ {τ ∈ N i,j | Jτ = j}.

Proof. Consider N j :=
⋃k

i=1 N i,j , j ∈ {0, 1}, which are PPPs of rate k · λj respectively. Apply-
ing [8, Theorem 1.4] delivers existence of a PPP L of rate

γ := ā(kλ0, kλ1, ρ + σ, ρ
ρ+σ ) = k · λ̄(λ0, λ1, σ, ρ, k),

such that any τ ∈ L holds τ ∈ NJτ . (Note that for k = 1 this already concludes the proof.)
Now, noting that the random variables Uτ for τ ∈ N0 ∪ N1, given by Uτ = i ∈ [k] iff τ ∈ N i,j

for some j, are iid, uniformly distributed on [k] and independent of (Jt), it is straightforward to
subdivide L into L1, . . . , Lk such that the Lemma holds. □

To illustrate the lemma above and the strategy of the following proof, we provide Figure 3.2.

t

x

N1,0 N1,1 N2,1N2,0

‘⊇’

x

L1 L2

Figure 3.2. This figure illustrates Lemma 3.6 for k = 2 in the context of the
graphical construction. We interpret the states 0 and 1 of Jt as the activity of a
site x ∈ Zd at time t, indicated by the colours grey and black, respectively. Gray
arrows belong to the PPPs N i,0, black ones to N i,1. They are depicted solid iff
they fit the activity of x. Arrows to the left belong to N1,j , those to the right to
N2,j . The lemma aims to estimate the solid arrows (black and grey) pointing to
the left from below (in the sense of “⊆”) by a PPP L1 and the ones pointing to
the right by L2 (as depicted on the right) such that L1 and L2 are independent.

Note that in the above lemma, the PPPs N i,0 and N i,1 for fixed i do not need to be indepen-
dent, which leaves room for the above mentioned dependencies. With this, we can now provide
a complementary result to Theorem 3.4, involving a dominated CP, by taking the trivial bound
for the δ-rates and applying Lemma 3.6 to the λ-rates.
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Theorem 3.7 (Dominated CP). Let (ξt) be a CPS whose initial distribution is of the form
µ = ν ⊗ πα. Further, we define λa = min{λaa, λad}, λd = min{λda, λdd},

τ := 1{λa≥λd}σ + 1{λa<λd}ρ,

λ̄ := 1
2

(
λa + λd + ρ+σ

|N | −
√(

|λa − λd| − ρ+σ
|N |
)2 + 4τ

|N | |λa − λd|
)

≥ 0.

Then (ξt) dominates a basic CP (ηt) with infection rate λ̄ and recovery rate δmax = max{δa, δd}.
Proof. First of all, w.l.o.g. assume that δa = δd = δmax, λaa = λad = λa and λda = λdd = λd.
Otherwise, consider a CPS (ξ̄t) with these rates, which is dominated by (ξt) by monotonicity.
Further, assume that λa ≥ λd or exchange the roles of a and d.

Let x ∈ Zd and enumerate {y ∈ Zd | y ∼ x} = {y1, . . . , y|N |}. Further, for i ∈ [|N |] let
Ai = {t ≥ 0 | yi ∈ At}, the active times of yi, and define

N i,0 := (T x→y,da ∩ Ai) ∪ (T x→y,dd ∩ Ac
i ) as well as

N i,1 := (T x→y,aa ∩ Ai) ∪ (T x→y,ad ∩ Ac
i ).

Now, both (N i,0) and (N i,1) are collections of PPPs with rates λd and λa respectively, such
that, letting Jt = 1At(x), Lemma 3.6, provides independent PPPs (Lx→y)y∼x each with rate λ̄,
dominated by the infection arrows of the CPS in the desired sense. Repeating this for every x ∈
Zd, using all the resulting Lx→y to build a graphical construction, delivers the desired dominated
CP with infection rate λ̄(λd, λa, σ, ρ, |N |). Insertion concludes the proof. (Non-negativity of λ̄
follows analogously to that of δ̄.) □

From the previous two theorems we can now read off sufficient conditions for survival and
extinction.
Corollary 3.8. Let (ξt) be a CPS with σ, ρ > 0.

(1) If δa + δd > 0, (ξt) goes extinct if the λ• are small enough.

(2) If min{λaa, λad} + min{λda, λdd} > 0, (ξt) survives if the δ• are small enough. In partic-
ular, in this case a non-trivial upper invariant distribution exists.

Proof. From the last part of the proof of Theorem 3.4 one can see that δ̄ > 0 if either δa > 0
or δd > 0. Thus, if λmax is small enough, (ηt) goes extinct and hence does (ξt). The second part
follows analogously by consideration of Theorem 3.7. □

These conditions imply existence of phase transitions for a broad subclass of CPS. However,
due to the high number of parameters, it is complicated to formulate more specific conditions
for the existence of phase transitions in a single parameter, e.g. λc

aa. Remark 3.12 illustrates an
example of absence of such a phase transition.
Remark 3.9 (Sharpness and further improvements of the bounds). Trivially, both the dominating
and dominated CP bounds become sharp when λ• and δ• are constant, i.e. when the CPS is a
CP itself.

Further, for extreme values of σ and ρ the bounds can also be sharp, since for ρ > |δa − δd|
as σ → 0 it holds that δ̄ → δmax. This implies that the coupling is good when dormant states
are lost and the CPREE becomes a CP itself. In particular, this shows that δ̄ is a much better
bound than the trivial bound min{δa, δd}. Similar arguments can be made for λ̄.

Adapting the proof above slightly, considering incoming arrows instead of outgoing ones,
one can also choose λ′

a = min{λaa, λda} and λ′
d = min{λad, λdd}, leading to a dominated CP

with infection rate λ̄′ = λ̄(λ′
a, λ′

d, σ, ρ, |N |). Then, exchanging λ̄ for max{λ̄, λ̄′} can further
improve the bounds obtained from Theorem 3.7 and relaxes the condition in Corollary 3.8(2)
to λa + λd + λ′

a + λ′
d > 0.
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Figure 3.3. Sketch of the minimal survival and extinction regions of a CPS due
to the domination results in Theorems 3.4 and 3.7. We consider the special case
where σ = ρ = 1 and λda = λdd = δd = 0 are fixed and the parameters λ = λaa =
λad and δ = δa vary. The parameters λ̄ and δ̄ depend on λ and δ respectively and
are determined according to the equations in Theorems 3.4 and 3.7. The quantity
δc

CP represents the critical recovery rate of the basic Contact Process as a linear
function of λ.
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Figure 3.4. Sketch of the minimal survival and extinction regions of a CPD.
The parameters δ = δa = δd and λ = λaa vary. We assume σ and ρ are fixed and
chosen according to Remark 3.12 so that for some δ∗ we have λc(σ, ρ, δ∗) = ∞,
i.e. survival is impossible for any δ ≥ δ∗. The exact form of the (strictly positive)
function δc

CP D(λ) is unknown.

Remark 3.10 (Couplings for the CPD). In special cases such as the CPD, these bounds can be
very bad: Here, the dominated CP, which has infection rate λ̄ = 0 and recovery rate δa > 0, will
never survive when started with finitely many infections. However, in order to ensure survival
one can construct an alternative coupling between the CPD (with δd = 0 or δd = δa) and oriented
percolation by adapting the arguments in [3, p. 138–142] to our setting. This gives the existence
of a critical δc for fixed σ, ρ and λ.

148



Contact Processes with switching

Remark 3.11 (Couplings for the CPREE). For the CPREE the dominating CP with λmax = λ
and δ̄ from Theorem 3.4 looks promising. Indeed, if we let σ, ρ → ∞ simultaneously, we observe
that

δ̄ → αδa + (1 − α)δd,

which coincides with δ∗ from Theorem 3.1. See Figure 3.6 for a comparison via simulation.
Remark 3.12 (Non-existence of critical infection rate for the CPD). In the special case of the
CPD, there are non-trivial choices of σ, ρ and δd such that the process does not survive for
any choice of λ and δa, i.e. λc(σ, ρ, δd, δa) = ∞ for all δa. This can be shown similarly to [24,
p. 2401-2403] by making a connection to continuum percolation and giving a coupling with a
multi-type-branching process.

Intuitively, if the dormant state is sufficiently lethal (δd ≫ 0) and active phases are sufficiently
rare (σ ≫ ρ), the infection goes extinct independently of its strength during the active phase.
Remark 3.13 (Monotonicity in the switching parameters). In some special cases one can even
show monotonicity in the parameters σ and ρ via the graphical construction. For example, the
coupling of two CPREE’s (Xt, At)(σ1, ρ1, δa, δd, λ) and (Yt, Bt)(σ2, ρ2, δa, δd, λ) with σ1 ≤ σ2,
ρ1 ≥ ρ2 and δd ≤ δa such that we have

Bt ⊆ At and Xt ⊆ Yt for all t ≥ 0
is straightforward. This comes from the fact that the dormant state is only in favour for the
infection because it decreases the recovery rate of the particles (if δd ≤ δa) and does not harm
the spread of the infection.

On the other hand, for the CPD with δa = δd the dormant state is harmful for the infection in
the sense that the recovery rate does not decrease and some infections are not allowed. Hence,
we can show monotonicity in σ and ρ for this special case as well.

3.3. Simulations

Figure 3.5 illustrates all results of Sections 3.1 and 3.2 in comparison to a single CPS (top left).
This shows that, even when σ and ρ are well within the range of the other parameters, the fast
switching limit CP (top right) can give an apparently reasonably good approximation to the
CPS, while neither dominating CP (below left) nor dominated CP (below right) nearly come as
close.

Meanwhile, Figure 3.6 shows, as argued in Remark 3.11, that the dominating CP (right)
can be a good approximation for the CPREE (left). Note that here with σ = ρ = 5, neither
is switching particularly fast, nor extreme in the sense of Remark 3.9, where ρ is significantly
larger than σ.

Finally, Figure 3.7 suggests that the critical parameter λc for (finite) survival of the CPD
under consideration lies in the interval [7, 8]. Since in that particular process sites are active
half of the time on average, intuitively one would assume that roughly a quarter of infection
arrows are successful. This argument suggests that λc ≈ 4λc

CP , where λc
CP denotes the critical

parameter of a CP with recovery rate 1
2 . (Note that this corresponds to the effective rates from

Theorem 3.1.) However, as shown in [21, Theorem 1.3], 4λc
CP ≤ 4· 1

2 ·1.95 = 3.9. Thus, intuition is
off here roughly by a factor of 2. It is reasonable to assume that this factor increases significantly
as switching gets slower and the CPS gets closer and closer to a CP in static environment.

4. Relation to other models and open problems

4.1. Relation to the “classical” multi-type Contact Process

The classical multi-type (in our set-up: two-type) Contact Process (MTCP) as described e.g.
in [20, 23] can be obtained as a scaling limit of our model. Recall that the MTCP does not allow
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Figure 3.5. CPS (top left), fast switching limit CP (λ∗, δ∗) (top right), domi-
nating CP (λmax, δ̄) (below left) and dominated CP (λ̄, δmax) (below right). Red
and blue: (active) infected and healthy respectively; yellow and green: dormant
infected and healthy respectively.

Figure 3.6. CPREE (left), dominating CP (λmax, δ̄) (right).

for switches between types of infected individuals, and the healthy state does not carry a type
at all. This means that if one only allows for finite switching rates ρ, σ, the classical multi-type
Contact Process lies outside of our modelling framework. However, if one is willing to consider
the limits of infinite switching rates (in a suitable sense), the model can be accommodated via
the transitions in Figure 4.1 (left).
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Figure 10. Simulations of a CPD, σ = ρ = 1, δa = δd = 1
2 , on Z/400Z

with only one initially infected individual at {0}. The plot shows for λ ∈
{6, 6.5, 6.75, 7, 7.25, 7.5, 7.75, 8} how many infections of 500 iterations survived
until time T .

4.2. Relation to the CPB of Remenik

Remenik in [24] introduced a model which is closely related to the CPD and which we will call
the Contact Process with Blocking (CPB), see Figure 11 (right). It can be seen as a special case
of our model with the convention δa = 1 and δd = ∞. (Choose σ = δ and ρ = αδ for some
α, δ > 0 to obtain the nomenclature of [24].) This model is interesting because we can couple any
CPS (Xt,At) (with recovery rate δa scaled to one) with a CPB (Yt,Bt) with identical switching
rates and infection rate λ = λaa via the graphical construction such that the CPB is dominated
by the CPS, i.e. Xt ⊇ Yt. Further, Remenik was able to show complete convergence for his model
(cf. [24, Proposition 5.1]).

(0, a) (1, a)

(0, d) (1, d)

2λn(1)(x, ξ)

2λn(1)(x, ξ)

δa
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∞∞
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λn(1)(x, ξ)

1

∞
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Figure 11. Left: The multi-type Contact Process; switching rates σ0 = ρ0 → ∞,
σ1 = ρ1 = 0 (MTCP). Right: State transition graph of the Contact Process with
blocking (CPB); δd → ∞, dashed transition will never occur.

Figure 3.7. Simulations of a CPD, σ = ρ = 1, δa = δd = 1
2 , on Z/400Z

with only one initially infected individual at {0}. The plot shows for λ ∈
{6, 6.5, 6.75, 7, 7.25, 7.5, 7.75, 8} how many infections of 500 iterations survived
until time T .

4.2. Relation to the CPB of Remenik

Remenik in [24] introduced a model which is closely related to the CPD and which we will call
the Contact Process with Blocking (CPB), see Figure 4.1 (right). It can be seen as a special
case of our model with the convention δa = 1 and δd = ∞. (Choose σ = δ and ρ = αδ for
some α, δ > 0 to obtain the nomenclature of [24].) This model is interesting because we can
couple any CPS (Xt, At) (with recovery rate δa scaled to one) with a CPB (Yt, Bt) with identical
switching rates and infection rate λ = λaa via the graphical construction such that the CPB is
dominated by the CPS, i.e. Xt ⊇ Yt. Further, Remenik was able to show complete convergence
for his model (cf. [24, Proposition 5.1]).
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Figure 4.1. Left: The multi-type Contact Process; switching rates σ0 = ρ0 →
∞, σ1 = ρ1 = 0 (MTCP). Right: State transition graph of the Contact Process
with blocking (CPB); δd → ∞, dashed transition will never occur.
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4.3. The CP with infection dormancy (CPID)

Besides the host dormancy perspective, there is also an infection dormancy perspective (“la-
tency” or “persistence”). For instance, a pathogen might encapsulate itself to have a higher
chance to survive under harsh conditions with the trade-off of no reproduction during the en-
capsulation. For modelling this we introduce a Contact Process with infection dormancy (CPID),
where only infected individuals exhibit switching. We assume that an infected individual with
a dormant infection recovers at a smaller rate than an individual with an active infection, i.e.
δd < δa. In return, only individuals which carry an active infection can infect their neighbours.
Again we assume a spontaneous change from active to dormant and vice versa. The transition
graph for this model is given below in Figure 4.2 (left).

To make the CPID comparable to CPS, we consider it artificially as a process with states in
F = {0, 1} × {a, d}. One way to do this would be letting σ0 = ρ0 → ∞ – similarly to MTCP.
However, there is another interesting way without losing the convenient independence between
switching rates and infection, which is given by introducing a diagonal arrow from (0, d) to (1, a)
(cf. Figure 4.2, right).

0 (1, a)

(1, d)

λn(1,a)(x, ξ)

δa

δd

σρ

(0, a) (1, a)

(0, d) (1, d)

λn(1,a)(x, ξ)

λn(1,a)(x, ξ)

δa

δd

σρ σρ

Figure 4.2. Left: State transition graph of the CPID. Right: Equivalent char-
acterization of the CPID on F S .

Via such diagonal arrows, infection events directly influence activity states, and this gives rise
to additional stochastic dependencies, since activity states do not evolve independently of the
infection any more. Furthermore, the ability of dormant infections to block infection spread leads
to the failure of the coupling arguments that we need to prove either monotonicity, additivity
or attractivity, which makes the application of the methods in Sections 2.2 and 3 infeasible.

What one can do, however, is to compare such a CPID (Xt, At) to a CPD (Yt, Bt) with
identical switching and recovery rates. Then, by comparing the graphical constructions of both
processes with identical initial configurations, one sees that At ⊇ Bt for all t, which then implies
Xt ⊇ Yt. In turn, the CPID is also dominated by a CP with rates λ and δ̄ by the same arguments
as in Theorem 3.4.

These couplings at least provide a basic understanding of the behaviour of the CPID. In
particular, we can conclude the existence of some parameter choices such that the CPID survives
and others such that the process does not. Nevertheless, a more vigorous study of the CPID is
desirable.

Lastly, one could also think of taking the diagonal arrow from (0, a) to (1, d) into account,
which would correspond to infections exhibiting an incubation period.
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4.4. Open problems and future research

Obviously, one may consider switching models with more than just two types, and perhaps even
infinitely many, opening up a wide modelling range. For the two type case, natural next steps
could be the derivation of a complete convergence result, investigation of strong survival as well
as investigating whether a critical CPS dies out.

However, it also seems natural to move beyond the contact process and to incorporate dor-
mancy and switching mechanisms into other classical interacting particle systems such as voter
models or exclusion processes, and to investigate their scaling limits. In this context, very re-
cent work of [12] shows that microscopic dormancy can give rise to non-classical macroscopic
transport laws, including up-hill diffusion, a phenomenon that cannot emerge in single-type
scenarios.
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