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Abstract

We establish a connection between two population models by showing that one is the scaling limit of
the other, as the population grows large. In the infinite population model, individuals are split into two
subpopulations, carrying either a selective advantageous allele, or a disadvantageous one. The proportion
of disadvantaged individuals in the population evolves according to the Λ-Wright–Fisher stochastic differ-
ential equation (SDE) with selection, and the genealogy is described by the so-called Bolthausen–Sznitman
coalescent. This equation has appeared in the Λ-lookdown model with selection studied by Bah and Par-
doux [1]. Schweinsberg in [16] showed that in a specific setting, due to the strong selection, the genealogy
of the so-called Moran model with selection converges to the Bolthausen–Sznitman coalescent. By splitting
the population into two adversarial subgroups and adding a weak selection mechanism, we show that the
proportion of disadvantaged individuals in the Moran model with strong and weak selections converges to
the solution of the Λ-Wright–Fisher SDE of [1].

1. Introduction

The Moran model is a classical model in population genetics. It describes the evolution in
continuous time of a haploid population with constant size, where generations are overlapping.
Every individual dies at rate 1 and is instantaneously replaced by a copy of an individual
chosen uniformly at random in the remaining population, including the individual who just
died. It is well-known that the genealogy of the Moran model is described by the so-called
Kingman’s coalescent, which is the only exchangeable1 coalescent process where merging events
are only binary and non-simultaneous. Some kind of universality of Kingman’s coalescent for the
genealogy of discrete time population models with fixed size was established in [12]; this result
is known as Möhle’s Lemma. In [13], Möhle also obtained convergence results towards different
coalescents, and even allowed the size of the population to vary.

In the Moran model of size N , when the population is split into two subgroups, say the
individuals carrying allele X and the ones carrying allele Y , the proportion (Xt)t≥0 of allele
X in the whole population converges as N → ∞, when speeding up the time by a factor N ,
towards the Wright–Fisher diffusion, that is the solution to the SDE

dXt =
√

Xt(1 − Xt)dWt,

where W is a standard Brownian motion. Note the symmetry between the two alleles reflecting
the fact that none of them has a selective advantage over the other. One of the implications
is the well-known duality relation between the number of blocks in Kingman’s coalescent and
the Wright–Fisher diffusion, as stated in [2, Theorem 2.7]. Namely, denoting Kt the number of

Keywords: Moran model with selection, Bolthausen–Sznitman’s coalescent, Λ-Wright–Fisher SDE.
2020 Mathematics Subject Classification: 60J80, 92D15, 92D25, 60H10.

1Exchangeable refers to the property that permuting the labels of several individuals in the sample leaves the
law of the process unchanged.

87

mailto:francois.ged@epfl.ch


François G. Ged

blocks in Kingman’s coalescent at time t, it holds for all x ∈ (0 , 1) and k ∈ N that

E(Xk
t |X0 = x) = E(xKt |K0 = k). (1.1)

The duality actually holds for more general coalescents, namely Λ-coalescents, and some
Fleming–Viot processes, as shown in [3, Equation (18)], that is, for Kt the number of blocks at
time t in a Λ-coalescent and (Xt)t≥0 the solution of some SDE.

The coalescence rates in a Λ-coalescent are characterized by a finite measure Λ on [0 , 1], such
that if the coalescent contains k blocks at some given time, any sub-family of size ℓ among the
k blocks merge at rate given by

λk,ℓ :=
∫

[0 ,1]
pℓ−2(1 − p)k−ℓΛ(dp).

In particular, the blocks are exchangeable, in the sense that all the possible combinations of ℓ
blocks have the same rate of merging. Kingman’s coalescent corresponds to the case Λ = δ0,
the Dirac mass at 0. Another instance of Λ-coalescent is the Bolthausen–Sznitman coalescent
introduced in [6], corresponding to Λ(dp) = dp. Its importance is due to its connections to
models such as spin glasses, continuous branching processes, travelling waves, some population
models, see e.g. [2] and references therein. The populations where we expect to observe the
Bolthausen–Sznitman coalescent are for instance populations undergoing strong selection [16],
exploring uninhabited territories [7], or quickly adapting to the environment [9, 14]. In those
cases, an individual sometimes reproduces more (or faster) and generates a family of size of the
same order as the population size.

Moran model with selection and Λ-lookdown model. When a death occurs in the Moran
model, instead of choosing an individual uniformly at random to reproduce, we can include a
selection component in the dynamics and choose the parent proportionally to its fitness. An
instance of a Moran model with selection has been studied by Schweinsberg in [15] and [16],
where the individuals accumulate beneficial mutations increasing their reproduction rates; this is
the model we are interested in this work and we will describe it in more details later on. The main
result of [16] establishes that the genealogy of the Moran model with selection of Schweinsberg
converges towards the Bolthausen–Sznitman coalescent, as the size of the population goes to
infinity. Let us connect it with another population model.

In [1], the authors study an infinite size population model called the Λ-lookdown model with
selection, whose genealogy is that of the corresponding Λ-coalescent. We are of course interested
in the Bolthausen–Sznitman case Λ(dp) = dp on [0 , 1]. Each individual carries either allele X
or allele Y , the selection advantaging the individuals of type2 X. Theorem 3.5 in [1] shows that
the proportion of carriers of Y is the solution of the following SDE:

Yt = Y0 − α

∫ t

0
Ys(1 − Ys)ds +

∫
[0 ,t]×[0 ,1]2

p(1{u≤Ys−} − Ys−)M(ds, du, dp), (1.2)

where M is a Poisson point process with intensity ds ⊗ du ⊗ dp
p2 , and α ≥ 0 represents the

selective advantage of X over Y . In [1], Equation (1.2) is called the Λ-Wright–Fisher SDE with
selection. The previously mentioned duality (1.1) in this case is between the solution of (1.2)
with α = 0 and the associated Λ-coalescent. One may wonder whether it is possible to split the
individuals in the Moran model with selection into two adversarial subgroups (X versus Y ), in
order to observe the convergence of the proportion of the disadvantaged group Y towards the
solution of (1.2). The goal of this work is to answer this question3.

2In our work, type will refer to another concept. We will get rid of the ambiguity when introducing our model.
3Although the duality nourished the intuition that there is a link between the Moran model with selection and

the Λ-lookdown model, we do not make use of any duality argument throughout the work.
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2. Model and main result

2.1. Previous results

We describe more formally the Moran model with selection and the results of Schweinsberg
in [15] and [16].

We consider a population of fixed size N ∈ N. Each individual dies at rate 1, meaning that
its lifetime is an exponential random variable with parameter 1. At time 0, the N individuals
carry no mutation. Each of them acquires a mutation that adds up to its current number of
mutations at rate µ = µN that can depend on N . We call the number of mutations carried by
an individual its type. When a death occurs, say at time t, the individual is instantaneously
replaced by a copy of an individual chosen in the population at time t, including the one who
just died, independently from the past. The parent is chosen at random proportionally to its
fitness at time t, as explained below, and the newborn individual then inherits the type of its
parent.

For all j ≥ 0 and t ∈ R+, we denote by Wj(t) the number of individuals of type j at time t
in the population. The average number of mutations at time t is thus given by

M(t) := 1
N

∑
j≥0

jWj(t).

Let s = sN > 0 be the coefficient of selection and let the fitness of the type j at time t be
max (1 + s(j − M(t)), 0). If a death occurs at time t, the probability that a particular individual
of type j reproduces is

Fj(t) := max (1 + s(j − M(t)), 0)∑
i≥0 Wi(t) max (1 + s(i − M(t)), 0) ,

which becomes

Fj(t) = 1 + s(j − M(t))
N

(2.1)

when all the fitnesses are positive. The neutral Moran model corresponds to the case where
s = 0, that is all the individuals have the same probability to reproduce. We stress that thus
defined, in our model, every mutation is beneficial.

Define

kN := log N

log(s/µ) and aN := log(s/µ)
s

, (2.2)

which are proven in [15] to be the scaling constants such that in aN units of time, the difference
between the largest type at time t and the largest type at time t + aN is of order kN . The
assumptions on the parameters of the model are the following:

lim
N→∞

kN

log(1/s) = ∞. (A1)

lim
N→∞

kN log kN

log(s/µ) = 0. (A2)

lim
N→∞

skN = 0. (A3)

In particular, it implies that s → 0, kN , aN → ∞ as N → ∞, and for any a, b > 0,
1

Na
≪ µ ≪ sb. (2.3)

We refer to [15] and [16] for more detailed discussions on these assumptions.
We will recall later on the fact from [15] that the number of types that have appeared before

time aN T is of order at most O(kN ) with high probability. Since skN → 0 as N → ∞ by
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Assumption (A3), the fitnesses for these types are always positive with high probability, that is,
the fitnesses are given by (2.1).

The main results of Schweinsberg in [15] concern the dynamics of the type distribution in the
population as N → ∞. Theorem 1.4 in [15] shows that after aN units of time, the distribution
of the types starts looking like that of a Gaussian variable with vanishing variance. Theorem 1.2
in [15] states that M(aN t)/kN converges in probability and uniformly on compact sets of (0 , 1)∪
(1 , ∞) towards a function m. A similar convergence holds for the difference between the fittest
individuals (the highest type alive) and the mean type, as shown in [15, Theorem 1.1], towards
the map q : R+ → R+ that satisfies

q(t) =
{

et if t ∈ (0 , 1),∫ t
t−1 q(u)du if t > 1.

(2.4)

This fully describes the dynamics of the type distribution as N → ∞, forward in time. It enabled
Schweinsberg in [16] to show, when looking backward in time, that the genealogy of the process
converges in finite-dimensional distributions towards the Bolthausen–Sznitman coalescent.

Following the fittest type. An important result in [16] is that, when sampling n individuals
in the population at time aN T and looking backwards in time, after aN units of time, all the
sampled individuals essentially share the same type with high probability and it goes on for their
ancestors, the common type being the fittest (i.e. largest) type in the population. This can be
rephrased as follows: after aN units of time forward, only the individuals that were among the
fittests have begotten a non-negligeable offspring. In order to track the fittest type, Schweinsberg
discretises the time at stopping times defined as follows: for all j ≥ 1, let

τj := inf {t ≥ 0 : Wj−1(t) > s/µ} . (2.5)
In words, τj is approximately the time when type j mutations start occurring, making j − 1 the
fittest type in the population at time τj ; see [15, Equation (3.16)] and the associated discussion.
Note that s/µ → ∞ as N → ∞ by (2.3), but s/µ

N → 0. Roughly speaking, it means that although
the largest type represents a fraction of the whole population close to 0, once this type reaches
a size ⌈s/µ⌉ := inf{n ≥ 1 : n ≥ s/µ}, it starts evolving in a very predictable way, which is the
reason why this discretisation is powerful. In particular, it is when a type j mutation occurs
relatively shortly after τj that a large family is likely to descend from it, due to the fact that the
fitness is relative to the mean (meaning that individuals mutating faster than usual are getting
strongly advantaged for reproducing). To follow the largest type, we introduce the random index

j(t) := sup {j ≥ 1 : τj ≤ aN t} , (2.6)
which is adapted to the natural filtration of the process (Wj(t); j ≥ 0)t≥0. We stress that the
notation j(t) refers to another quantity in [15, 16].

2.2. Adding the weak selection dynamics

Recall that we want to divide our population into two adversarial subgroups, say X and Y ,
giving a selective advantage to X such that the proportion of Y -individuals converges towards
the solution of (1.2) as N → ∞. It is important to note that this new selection between groups
X and Y should leave unchanged the selection between the different types. Henceforth, we will
use the name type without further precisions to refer to the number of mutations carried by an
individual, never for his group X or Y alone. Nonetheless we will sometimes use the condensed
type (Y, j) to refer to both the group and type of an individual.

For technical reasons due to the fact that the population takes about aN units of time to reach
the Bolthausen–Sznitman dynamics, we study the proportion of Y -individuals starting only from
time τj(2), when the types’ distribution already looks like a Gaussian distribution. Let (yN )N∈N
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be a sequence in (0 , 1) such that yN → y ∈ (0 , 1) as N → ∞ and yN ⌈s/µ⌉ ∈ {1, . . . , ⌈s/µ⌉}. At
time τj(2), we mark uniformly at random exactly yN ⌈s/µ⌉ type j(2) − 1 individuals to be in the
group Y . Each individual of type j < j(2)−1 is marked with probability yN . All the individuals
in the population that are not in the Y group form the X group. The usual reproduction
mechanism is left unchanged by the membership of X or Y . During a reproduction event, the
child inherits the group of its parent.

Recall the definition of the map q in (2.4). Starting from some deterministic integer k∗
N defined

above the forthcoming equation (3.7), Schweinsberg introduced deterministic times approximat-
ing the random times τj , j ≥ kN ∗ +1, recursively defined by τ∗

k∗
N +1 = 0,

τ∗
j+1 = τ∗

j + aN

kN q(τ∗
j /aN ) , j ≥ k∗

N + 1. (2.7)

We then define

rj :=
τ∗

j+1 − τ∗
j

aN
. (2.8)

We add a new selection mechanism, that we call weak selection, operating between groups X
and Y as follows. Set the weak selection coefficient α ≥ 0, that does not depend on N . Let Yj(t)
be the number of (Y, j)-individuals at time t for j ≥ j(2), and define Xj(t) similarly for the
(X, j)-individuals. Every time a (Y, j)-individual acquires a j + 1-th mutation, say at a time t,
it is instead killed with probability

α

rj+1
· Xj(t)

Xj(t) + Yj(t) . (2.9)

Each killing is immediately compensated by choosing an individual uniformly at random among
the Xj(t) (X, j)-individuals to give birth to a (X, j + 1)-individual. Note that the dynamics of
the types (i.e. number of mutations) thus remain unchanged.

Let (YN
t )t≥2 be the càdlàg version of the process which, informally, follows the proportion of

Y -individuals among the fittest ones, that is

YN
t :=

Yj(t)−1(τj(t))
⌈s/µ⌉

.

Note that the process (YN
t )t≥2 is not Markovian, due to the interactions between the types.

Moreover, the individuals counted in Yj(τj+1) need not be children of the individuals in Yj−1(τj)
We now state our main result.

Theorem 2.1. Given that YN
2 = yN ∈ (0 , 1), for all T > 2, the process (YN

t )t∈[2 ,T ] converges
weakly for the Skorokhod topology towards the unique solution of (1.2).

The strong uniqueness of the solution of (1.2) is proven in [8, Theorem 4.1].

Random scaling of the weak selection. The killing probability (2.9) involves deterministic
scaling factors rj , j ≥ k∗

N + 1. Throughout the paper, instead of deriving approximations of rj

in every intermediate result, we shall rather use specific random factors to simplify the proofs;
when establishing the convergence of Theorem 2.1, we will only need to make the approximation
of rj once. We redefine the weak selection mechanism by replacing (2.9) with

α

qj+1
· Xj(t)

Xj(t) + Yj(t) (2.10)

where qj+1 is a random variable, defined later on in (3.8), that can be understood as the difference
between the largest type and the average type in the population at the time when the type j +1
start appearing. It is measurable with respect to the natural filtration of the population at this
time and we suppose independence of these killings with all randomness after this time. We
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will see in the forthcoming Lemma 3.2 that 1/qj+1 appears naturally as a scaling of the weak
selection in order to observe a non-trivial limit as N → ∞, and that rj ≈ qj in Equation (4.5),
such that the two probabilities (2.9) and (2.10) are, in some sense, asymptotically equivalent.

Organisation of the paper.
• Section 3 contains technical tools for the proof of Theorem 2.1, divided into three sub-

sections:
(1) The first one recalls notation and results from [15] and [16]. Proposition 3.1 describes

the evolution of the types and related quantitites, Lemma 3.2 controls the time lapse
between the random discretization step τj+1 − τj defined in (2.5). Sometimes, an
individual will have a much larger than usual number of descendents born between
these times. Lemma 3.3 approximates the law of the size of such a large family.

(2) The second subsection introduces some notation and two new populations whose
dynamics need to be described. Informally, the first population is identical to our
model except that the most recent killings are cancelled, whereas the second pop-
ulation consists of (X, j)-individuals descending from a recent killing. They are of
interest because one can retrieve the proportion of Y -individuals in the original pop-
ulation from these two. Lemma 3.4 shows that the weak selection does not interfere
much with the strong selection, in the sense that with high probability, the same
individual is not affected by the two mechanisms at the same time.

(3) The third subsection adapts the techniques of Schweinsberg based on martingales
to investigate the fluctuations of different subpopulations. It is divided into 5 sub-
subsections, whose organisation is made precise at the beginning of the subsection.
Lemmas 3.5 and 3.6 are technical results that serve to obtain the approximation of
the (Y, j − 1)-individuals when the (Y, j)-individuals start appearing in the popula-
tion; this approximation is made in Lemma 3.7. Lemma 3.8 contains tools to control
the numbers of Y -individuals as well as the number of individuals descending from
killings. They will be used to derive Lemma 3.9 that describes the evolution of
the proportion of Y -individuals when one individual in the population reproduces
much more that the others, due to the strong selection. Lemma 3.10 shows that, in
expectation, in the absence of weak selection and as long as no type j individual
appears too close to time τj , the proportion of Y -individuals remains constant. The
expectation of the effect of the weak selection on the proportions is obtained in
Lemma 3.11.

• Section 4 is devoted to the proof of Theorem 2.1. To show the convergence of the pro-
cess when the killing probability is given by (2.10), the strategy is the following. We
first establish the tightness of YN in Lemma 4.1. Next, we show in Lemma 4.2 that the
expectation of the increment of the proportion of Y -individuals from j to j + 1 is very
close to the generator of the solution of (1.2). We then introduce a martingale problem
in Lemma 4.3 which states that any weak limit of YN solves it. We continue the argu-
ment with Lemma 4.4, who states that this weak limit is therefore a solution of (1.2).
The section ends with the extension of the convergence to the process when the killing
probability is given by (2.9), through a coupling.

3. Toolbox

3.1. Schweinsberg’s setting and notation

In this subsection, we introduce the notation used in [15, 16] and we recall some of the results
we will need. Thus, what follows does not directly concern the dynamics of the two groups X
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and Y , but rather that of the type distribution. Set T > 2 a positive real number, arbitrarily
large. Fix ϵ, δ ∈ (0 , 1) such that

δ < min
{ 1

100 ,
1

19T
, ϵ3
}

, (3.1)

as required in [16, Equation (5.1)]. We will study the process up to time aN T , and control its
behaviour with a probability greater than 1 − ϵ, with accuracy δ. We shall denote by Ci, i ∈ N,
constants that can depend on δ, ϵ, T whereas C will always refer to a constant independent of
those parameters, that may vary from line to line. We will also keep C independent from the
weak selection coefficient α of (2.10).

We introduce some tools to study the evolution of a type. Denote Bj(t), Dj(t) respectively
the birth-rate and death-rate per individual of type j at time t ≤ aN T , that is:

Bj(t) := (N − Wj(t))Fj(t), (3.2)
Dj(t) := µ + 1 − Wj(t)Fj(t), (3.3)

and define
Gj(t) := Bj(t) − Dj(t). (3.4)

The value of Gj(t) is the growth-rate per individual of type j at time t. Thus, as in [15] and [16],
we can define for all j ≥ 0

(Zj(t))t∈[0 ,aN T ] :=
(

e−
∫ t

0 Gj(v)dvWj(t) −
∫ t

0
µWj−1(u)e−

∫ u

0 Gj(v)dvdu − Wj(0)
)

t∈[0 ,aN T ]
. (3.5)

Let (FN
t )t≥0 denote the natural filtration of (Wj(t), j ≥ 0)t≥0. For all j ≥ 0, the process

(Zj(t))t∈[0 ,aN T ] is a square integrable martingale with respect to FN , the variance of which
is given for t ∈ [0 , aN T ] by

Var(Zj(t)) = E
(∫ t

0
e−2

∫ u

0 Gj(v)dv
(
µWj−1(u) + Bj(u)Wj(u) + Dj(u)Wj(u)

)
du

)
, (3.6)

see [15, Proposition 5.1]. The role of Zj(t) is to control the fluctuations of Wj(t) as follows: we
rewrite (3.5) as

(Wj(t))t∈[0 ,aN T ] :=
(

e
∫ t

0 Gj(v)dv(Wj(0) + Zj(t)) +
∫ t

0
µWj−1(u)e

∫ t

u
Gj(v)dvdu

)
t∈[0 ,aN T ]

.

Then one sees that if Zj(t) is much smaller that e−
∫ t

0 Gj(v)dv, then describing Wj(t) reduces to
describing e

∫ t

0 Gj(v)dv and Wj−1(u) up to time t. To show that Zj is small with high probability,
the general strategy is to bound its variance given by (3.6). Roughly speaking, Zj is a martingale
because e

∫ t

0 Gj(v)dv is the expected number of individuals alive at time t in a pure birth process
starting from a single individual. Hence, one sees that e−

∫ t

0 Gj(v)dvWj(t) would be constant in
expectation, in the absence of immigration by mutations. The integral in (3.5) is exactly the
term needed to compensate these mutations and their offspring. The variance in (3.6) follows
from stochastic calculus, as shown in [15, Section 5].

We will often work with variants of the martingales Zj . We will always admit the fact that
they are martingales, the reasons being the same as the one sketched above, as well as the
formulas for their variances.

In [15, 16], Schweinsberg often distinguishes whether j is greater or smaller than k∗
N :=

⌈k+
N − 1⌉, where

k+
N := kN + 2kN log kN

log(s/µ) . (3.7)

93



François G. Ged

This constant is, roughly speaking, the first type after which the type distribution looks like a
Gaussian distribution. For j ≥ k∗

N + 1, let

q∗
j :=

{
j − kN if aN − 2aN /kN ≤ τj ≤ aN + 2aN /kN ,

j − M(τj) otherwise.
qj := max{1, q∗

j }. (3.8)
As we mentioned before, all the individuals have type 0 at time 0 and the wave dynamics starts
approximately around time aN , which is why the condition in the definition of q∗

j is needed
in [15, 16]. However, we will be mainly interested in types j ≥ j(2) for which q∗

j = j − M(τj).
Recall that τj defined in (2.5) is approximately the time where one expects to see the first type
j mutations, hence qj is an approximation of the difference between j and the average number
of mutations when individuals of type j start appearing. Set

b := log 24000T

δ2ϵ
. (3.9)

For j ≥ k∗
N + 1, define

ξj := max
{

τj , τj + 1
sqj

log
(

1
sqj

)
+ b

sqj

}
. (3.10)

We shall work on a specific event, realized with high probability, such that it holds that τj <
ξj < τj+1 for all j ≥ k∗

N + 1 such that τj+1 < aN T . The goal of ξj is to distinguish whether a
mutation is faster than usual: we call a type j mutation an early type j mutation if it occurs
in the time interval [τj , ξj ]. The fitness being relative to the mean, the earlier a mutant is, the
stronger is its advantage to reproduce immediately after the mutation. The individual acquiring
an early type j mutation, as well as its offspring, are called early type j individuals. In general,
we will speak of early type j individuals during the time interval [τj , τj+1] such that (on the
high probability event we consider) they still have type j when thus called. Schweinsberg showed
that large families appear with the Bolthausen–Sznitman rates as a result of early mutations.

In [15, 16], ζ = ζN denotes a stopping time that is essentially the first time when the type
distribution behaves atypically, i.e. differently from its large population limiting behavior. For
example, it is defined such that before ζ and for some time after τj , the dynamics of the number of
type j individuals has a specific exponential growth, see Proposition 3.1(3) below). Its definition
requires a lot of technical considerations that are not relevant for our purposes and we will merely
recall the properties that we will need and that hold before time ζ. The precise definition of ζ is
given in [15, Section 3.3]. In particular, for N large enough, it holds that P(ζ > aN T ) > 1 − ϵ.
Throughout the paper we will say that a property holds on some event E if it is true for P-almost
every ω ∈ E. Similarly, if we say that on the event E, E(β) ≤ c for some random variable β and
some constant c, we mean that E(β|E) ≤ c.

We shall work on {ζ > aN T} so that the properties of the next proposition hold. Besides,
the listed properties in Proposition 3.1 below always hold under the conditions given in their
respective statements, e.g. for all j ≥ k∗

N +1 such that τj+1 ≤ ζ ∧aN T means for all ω ∈ {τj+1 ≤
ζ ∧ aN T}. The results it gathers are from [15] and [16] as follows:

• (1) is taken from both Proposition 3.3(1) and Proposition 3.6(3) in [15].

• (2) is taken from Proposition 3.3(2) in [15].

• (3) is taken from Proposition 3.3(3) [15].

• (4) is taken from Proposition 4.4(1)–(3) in [16].

• (5) is taken from Lemma 4.5 in [15].
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Proposition 3.1. Recall that k∗
N + 1 defined above Equation (3.7) is the first type we are

interested in, and for all j ≥ 1, τj defined in (2.5) is roughly the time when type j start appearing
in the population. The real numbers ϵ, δ ∈ (0 , 1) do not depend on N and were fixed such
that (3.1) is satisfied. For N large enough, the following hold:

(1) For all j ≥ k∗
N +1 such that τj+1 ≤ ζ ∧aN T , no early type j individual acquires a j +1-th

mutation before time τj+1. Furthermore, it holds that
aN

3kN
≤ τj+1 − τj ≤ 2aN

kN
,

and on {ζ > aN T}, we have τJ+1 > aN T for J := 3TkN + k∗
N + 1, so the types greater

or equal to J + 1 have not appeared at time aN T yet.

(2) For all j ≥ k∗
N + 1 and t ∈ [τj + aN

4T kN
, τj+1] ∩ [0 , ζ ∧ aN T ]:

(1 − 4δ)e
∫ t

τj
Gj(v)dv

≤ W̃j(t) ≤ (1 + 4δ)e
∫ t

τj
Gj(v)dv

,

where W̃j denote the number of non-early type j. Moreover, the upper bound holds for
all t ∈ [ξj , τj+1] ∩ [0 , ζ ∧ aN T ], where ξj was defined in (3.10).

(3) For all j ≥ k∗
N + 1 and t ∈ [τj+1 , τ⌈j+ kN

4 ⌉ + aN ] ∩ [0 , ζ ∧ aN T ]:

(1 − δ) s

µ
e

∫ t

τj+1
Gj(v)dv

≤ Wj(t) ≤ (1 + δ) s

µ
e

∫ t

τj+1
Gj(v)dv

.

(4) For all j ≥ k∗
N + 1 and t ∈ [τj , τj+1] ∩ [0 , ζ ∧ aN T ]:

s(qj − C1) ≤ Gj(t) ≤ s(qj + C1),
skN (1 − 2δ) ≤ Gj(t) ≤ skN (e + 2δ),
kN (1 − 2δ) ≤ qj ≤ kN (e + 2δ),

for some constant C1 > 0.

(5) For all j ≥ k∗
N + 1 such that τj+1 ≤ ζ ∧ aN T , we have

s

C2µ
≤ e

∫ τj+1
τj

Gj(v)dv
≤ 2s

µ
,

for some constant C2 > 0.

In [15, Proposition 3.6(1)] shows that on {ζ > aN T}, τk∗
N +1 ≤ 2aN /kN so that τj(2) > τk∗

N +1.
As explained in the introduction, it will be more convenient for us to study the process starting
at time τj(2). We also note that by Proposition 3.1(1) above and Assumption (A3), on the event
{ζ > aN T}, all the fitnesses of the individuals until time aN T are positive, i.e. (2.1) holds, and
therefore

Gj(t) = s(j − M(t)) − µ, ∀ t ≤ aN T and j ≤ J, (3.11)

where J := 3TkN + k∗
N + 1 is from (1) of the above proposition. Moreover, for N large enough,

for all t ≤ aN T and every j ≤ J , on the event {ζ > t}, one has

Bj(t) + Dj(t) = (N − 2Wj(t))(1 + s(j − M(t)))
N

+ 1 + µ ≤ 2 + sJ + µ

≤ 3, (3.12)

by assumption (A3).
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In [16], the study of the process backwards in time requires to consider only types j’s that
belong to some set I ⊂ N, defined just before Lemma 6.2 in [16]. Its definition involves a fixed
parameter t0 ∈ (T − 37 , T − 2). Choosing t0 = T − 3, one gets

I = {j1, . . . , j2}
with j1 := max{j : τ∗

j ≤ 2aN } − ⌊9δTkN ⌋, (3.13)
j2 := max{j : τ∗

j ≤ aN (T − 1 + 19/kN )} + ⌊9δTkN ⌋,

where the τ∗
j ’s are some deterministic times, approximating the random τj ’s (see [16, Equation

(6.1)]). The relevant informations for our purposes are given by Lemma 6.2 in [16], which shows
that on the event {ζ > aN T}, it holds that τj1 < 2aN , and j2 ≥ L + 9, where L is defined in
Lemma 5.1 of [16] as

L := inf{j : τj ≥ aN (T − 1) − 3aN /kN }.

It entails that τj2 ≥ τL + 9aN /3kN by Proposition 3.1(1). Hence, τj2 > aN (T − 1). We thus
have that on the event {ζ > aN T}, j(2) ∈ I and j(T − 1) ∈ I, so that for j(2) ≤ j ≤ j(T − 1),
we can use the results of Schweinsberg proven for j ∈ I, since then 2aN ≤ τj ≤ aN (T − 1). In
particular, on the event {ζ > aN T}, the estimates in Proposition 3.1 hold for j ∈ I and we will
thus apply the proposition for j ∈ I without recalling that this ensures τj ≤ aN T .

We deduce a result on the time length between τj and τj+1 that will be useful later on.

Lemma 3.2. For all j ∈ I, conditionally given FN
τj

and on the event {ζ > τj+1}, it holds that

1 − 2δ

qj
≤ τj+1 − τj

aN
≤ 1 + 2δ

qj
.

Proof. By Proposition 3.1(4), we know that supt∈[τj ,τj+1] |Gj(t) − sqj | ≤ sC1. Equation (8.32)
in [16] states that

(1 − δ)aN ≤
∫ τj+1

τj

Gj(v)
s

dv ≤ (1 + δ)aN .

Therefore we have that
1 − δ

qj + C1
≤ τj+1 − τj

aN
≤ 1 + δ

qj − C1
,

which implies for N large enough that
1 − 2δ

qj
≤ τj+1 − τj

aN
≤ 1 + 2δ

qj
,

since by Proposition 3.1(4), qj ≥ (1 − 2δ)kN → ∞ as N → ∞. □

We conclude the first subsection of the toolbox with a reformulation of the result of Schweins-
berg in [16] showing that the law of the number of early type j individuals at time τj+1 can be
well approximated by the rates corresponding to Bolthausen–Sznitman’s coalescent.

Lemma 3.3. For N large enough, for all j ∈ I, j ≥ j(2), conditionally given FN
τj

and on the
event {ζ > τj+1}, for any g ∈ C∞([0 , 1]), it holds that∣∣∣∣∣qj

∫
(ϵ ,1)

g(x)pSj (dx) −
∫ 1

ϵ
g(x)dx

x2

∣∣∣∣∣ ≤ Cϵ(∥g∥∞ + ∥g′∥∞),

where Sj is the proportion of early type j individuals at time τj+1 among the type j individuals
and pSj its probability distribution supported on {0, 1/⌈s/µ⌉, . . . , 1}.
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Proof. Let ν(dx) = dx/x2, x ∈ (0 , 1]. Lemma 7.8 in [16] shows that for all y ∈ (ϵ , 1− δ], it holds
that ∣∣∣qjpSj ((y , 1]) − ν((y , 1))

∣∣∣ ≤ 14δν((y , 1]) ≤ 14δ

ϵ
. (3.14)

We implicitely used that the event in [16, Equation (7.48)] has probability going to 1 as N → ∞,
see Lemmas 7.4 and 7.7 of the same paper. Roughly speaking, on this event the early mutants
are coupled with a branching process introduced in Section 7.2 of the same paper, allowing to
approximate the law of Sj . We write∣∣∣∣∣qj

∫
(ϵ ,1)

g(x)pSj (dx) −
∫ 1

ϵ
g(x)ν(dx)

∣∣∣∣∣ =
∣∣∣∣∫ 1

ϵ
g′(y)(qjpSj − ν)((y , 1]) − g(ϵ)(qjpSj − ν)((ϵ , 1])dy

∣∣∣∣
≤ 14δ

ϵ
∥g′∥∞ + ∥g′∥∞

∫ 1

1−δ
dy(qjpSj + ν)((1 − δ , 1])) + 14δ

ϵ
∥g∥∞ ≤ C

δ

ϵ
(∥g∥∞ + ∥g′∥∞).

We conclude using that δ/ϵ < ϵ by (3.1). □

3.2. Splitting strategy to study the weak selection

Recall that, among the type j(2) − 1 individuals at time τj(2), we assigned yN ⌈s/µ⌉ of them to
group Y , and (1 − yN )⌈s/µ⌉ to group X, with the weak selection mechanism explained above
Theorem 2.1. One sees when α = 0 that

{Wj(t) : t ≤ aN T, j ≥ 0} = {Xj(t) + Yj(t) : t ≤ aN T, j ≥ 0}

is exactly the model of Schweinsberg. Moreover, when α ̸= 0, the type distribution remains
unchanged (only the genealogy is altered). To make the proofs, we will study the fluctuations of
each group as if there was no weak selection and then combine it with estimates on the number
of killings. We thus introduce the notation Y̌j(t) for j ∈ I, j ≥ j(2) and t ∈ [τj , τj+1] for the
number of (Y, j)-individuals if we had cancelled the killings of the weak selection previously
described between [τj , τj+1], and only those ones4. In particular, for t ∈ [τj , τj+1], denoting
X̌j(t) the total number of individuals at time t descending from killings between [τj , t], one can
write Yj(t) = Y̌j(t) − X̌j(t). Hence, our strategy is to control X̌j(t) and Y̌j(t) separately before
combining them to obtain control on Yj(t).

To obtain (1.2), the weak selection should have asymptotically no effect on the strong selection.
Schweinsberg in [15] is able to couple the early type j individuals and their progeny with

a branching process, for a certain amount of time. This allows him to bound the probability
that an early mutation survives. Let Ej be the event that a Y -individual is killed by the weak
selection during an early type j mutation in [τj , ξj ], and that the resulting (X, j)-individual has
descendents that are alive at time τj+1. We complete the filtration FN to take into account the
groups X and Y of the individuals. The following lemma shows that these problematic events
occur with negligible probabilities.

Lemma 3.4. For all j ∈ I, j ≥ j(2), on the event {ζ > τj}, it holds that

P
(
Ej |FN

τj

)
≤ C

ϵq2
j

.

Proof. By independence, the probability of Ej is the product of the probabilities of a surviving
early mutation and a killing, the former being upper bounded by Lemma 7.8 in [16] (this Lemma

4Note that Y̌j does not correspond to Yj in a population with α = 0, since the killings of type j′ ≤ j individuals
that occurred before time τj are kept when counting Y̌j .
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actually bounds the probability of survival up to a time τ ′
j , that is anyway smaller than τj+1 on

the event {ζ > τj+1}). By combining this bound and (2.10), we obtain

P
(
Ej |FN

τj
, {ζ > τj}

)
≤ C

1
ϵqj

α

qj
≤ Cα

ϵq2
j

,

as claimed. □

From Lemma 3.4, we see that

P
( ⋃

j∈I
j≥j(2)

Ej

∣∣∣{ζ > aN T}
)

≤
∑
j∈I

j≥j(2)

Cα

ϵq2
j

≤ CαT

ϵkN
→ 0,

as N → ∞, where we used that the number of elements in I is smaller than J ≤ 4kN T , see the
discussion after (3.13). Hence, we redefine ζ to include the first time at which an event Ej occurs
and with this new definition, one can still choose N large enough such that P(ζ > aN (T − 1)) >
1 − ϵ, in particular no Ej occurs for any j ∈ I with high probability.

3.3. Expected fluctuations of the proportions

We divide this section into 5 parts: in the first subsection, we will look at the effect of the weak
selection on type (j − 1), that is the second fittest type during [τj , τj+1] when the fittest type
j starts building up. Then, in the second subsection, we will study the non-early type (Y̌ , j)-
individuals during [ξj , τj+1] In the third subsection we will describe the impact of an early
mutation on the proportion of Y̌ individuals. In the fourth subsection, we will introduce the
discrete process indexed by j following the proportion of (Y, j)-individuals at time τj . The im-
portance of weak selection, that is the expected number of killings of (Y, j)-individuals occurring
in [τj , τj+1], will be discussed in the fifth subsection.

3.3.1. The type j − 1 during [τj , τj+1]

Let X̌
τj

j−1(t) be the number of (X, j −1)-individuals at time t ≥ τj descending from a killing that
occurred after time τj . In order to properly estimate X̌j(τj+1), one needs to control X̌

τj

j−1(t) for
all t ∈ [τj , τj+1], since type j individuals can come from mutants of these type j − 1 individuals.
The next lemma enables us to do so.

Lemma 3.5. For N large enough, on the event {ζ > τj+1}, for all j ∈ I, j ≥ j(2), with
probability 1 − o(√µ), it holds that

sup
t∈[τj ,τj+1]

X̌
τj

j−1(t)
Wj−1(t) ≤ 3α

qj−1
.

Proof. We admit the two following statements without proof, referring to [15, Section 5] for
details on how to prove them: For all j ∈ I, j ≥ j(2), we have that

• the process defined for t < τj by Ž
τj

j−1(t) = 0 and for t ≥ τj by

Ž
τj

j−1(t) := e
−
∫ t

τj
Gj−1(v)dv

X̌
τj

j−1(t) −
∫ t

τj

e
−
∫ u

τj
Gj−1(v)dv

µ
α

qj−1

Xj−2(u)Yj−2(u)
Wj−2(u) du (3.15)

is a mean zero, square integrable martingale;

98



Moran model with simultaneous strong and weak selections

• its conditional variance is given by

Var
(
Ž

τj

j−1(t ∧ ζ)|FN
τj

)
= E

(
1{ζ>τj}

∫ t∧ζ

τj

due
−2
∫ u

τj
Gj−1(v)dv

×
(

µ
α

qj−1

Xj−2(u)Yj−2(u)
Wj−2(u) + (Bj−1(u) + Dj−1(u))X̌τj

j−1(u)
)∣∣∣∣FN

τj

)
. (3.16)

The first step of the proof is to bound (3.16). Since Xj−2(t) and Yj−2(t) are smaller than Wj−2(t)
by definition, Proposition 3.1(3) then (5) entail that

E
(
1{ζ>τj}

∫ t∧ζ

τj

due
−2
∫ u

τj
Gj−1(v)dv

µ
α

qj−1

Xj−2(u)Yj−2(u)
Wj−2(u)

∣∣∣∣FN
τj

)

≤ E
(
1{ζ>τj}

∫ t∧ζ

τj

due
−2
∫ u

τj
Gj−1(v)dv

(1 + δ)s α

qj−1
e

∫ u

τj−1
Gj−2(v)dv

∣∣∣∣FN
τj

)

≤ E
(
1{ζ>τj}

∫ t∧ζ

τj

du(1 + δ)2s2

µ

α

qj−1
e

−
∫ u

τj
Gj(v)dv

e−s(τj−τj−1)
∣∣∣∣FN

τj

)
,

where we used that Gj−1(v) = Gj−2(v) + s for all v ∈ [τj , τj+1 ∧ ζ] (3.11). Proposition 3.1(4)

allows us to write
∫ t∧ζ

τj∧ζ e
−
∫ u

τj
Gj(v)dv

du ≤ 1
s(qj−C1)(1 − e−s(qj−C1)(t∧ζ−τj∧ζ)) ≤ 2

sqj
since s → 0 as

N → ∞. Hence, we have that

E
(
1{ζ>τj}

∫ t∧ζ

τj

due
−2
∫ u

τj
Gj−1(v)dv

µ
α

qj−1

Xj−2(u)Yj−2(u)
Wj−2(u)

∣∣∣∣FN
τj

)
≤ Cα

s

µ

e−s(τj−τj−1)

qjqj−1
. (3.17)

On the other hand, Bj−1(u) + Dj−1(u) ≤ 3 for all u ≥ τj−1 by (3.12). We apply Proposi-
tion 3.1(4), then use (3.15) and the martingale property of Ž

τj

j−1 to write

E
(
1{ζ>τj}

∫ t∧ζ

τj

e
−2
∫ u

τj
Gj−1(v)dv

(Bj−1(u) + Dj−1(u))X̌τj

j−1(u)du
∣∣FN

τj

)

≤ 3E
(
1{ζ>τj}

∫ t∧ζ

τj

e−s(qj−C1−1)(u−τj)e
−
∫ u

τj
Gj−1(v)dv

X̌
τj

j−1(u)du
∣∣FN

τj

)

≤ 3
∫ t

τj

due−s(qj−C1−1)(u−τj)

× E
(

Ž
τj

j−1(u ∧ ζ) + 1{ζ>t}

∫ u

τj

dre
−
∫ r

τj
Gj−1(v)dv

µ
α

qj−1

Xj−2(r)Yj−2(r)
Wj−2(r)

∣∣FN
τj

)

≤ 3
∫ t

τj

due−s(qj−C1−1)(u−τj)E
(
1{ζ>t}

∫ u

τj

dre
−
∫ r

τj
Gj−1(v)dv

µ
α

qj−1

Xj−2(r)Yj−2(r)
Wj−2(r)

∣∣FN
τj

)

≤ Cα

sqj

s

µ

e−s(τj−τj−1)

qjqj−1
,

where the last inequality follows from (3.17). Thus, applying Proposition 3.1(5) and coming
back to (3.16), we have shown thanks to (3.17) and (A3) that

Var
(
Ž

τj

j−1(t ∧ ζ)|FN
τj

)
≤ Cα

s

µ

e−s(τj−τj−1)

sk3
N

.
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Proposition 3.1(1) gives s(τj − τj−1) ≥ s aN
3kN

= log(s/µ)/3kN , which tends to ∞ as N → ∞ as
a consequence of assumption (A2) and kN → ∞. In particular, on {ζ > τj}, it holds that

e−s(τj−τj−1) = o

( 1
kN

)
(3.18)

Therefore, Doob’s maximal inequality for square integrable martingales yields that

P
(

sup
t∈[τj ,τj+1]

|Žτj

j−1(t ∧ ζ)|
⌈s/µ⌉

>
1

k2
N

∣∣∣FN
τj

)
≤ Cα

µ

s2 kN e−s(τj−τj−1) = o(µ1/2), (3.19)

since µ ≪ sa for any a > 0 by (2.3). Then, we use Proposition 3.1(3) to write
X̌

τj

j−1(t ∧ ζ)
Wj−1(t ∧ ζ) ≤ 1

1 − δ
e

−
∫ t∧ζ

τj
Gj−1(v)dv X̌

τj

j−1(t ∧ ζ)
⌈s/µ⌉

= 1
1 − δ

(
Ž

τj

j−1(t ∧ ζ)
⌈s/µ⌉

+
∫ t∧ζ

τj

e
−
∫ u

τj
Gj−1(v)dv

µ
α

qj−1

Xj−2(u)Yj−2(u)
Wj−2(u)⌈s/µ⌉

du

)

≤ 1
1 − δ

(
Ž

τj

j−1(t ∧ ζ)
⌈s/µ⌉

+ µe

∫ τj
τj−1

Gj−1(v)dv α

qj−1

∫ t∧ζ

τj

e−s(u−τj) Xj−2(u)Yj−2(u)
Wj−2(u)2(1 − δ)du

)

≤ 1
1 − δ

(
Ž

τj

j−1(t ∧ ζ)
⌈s/µ⌉

+ 2s
α

qj−1

∫ t∧ζ

τj

e−s(u−τj)

1 − δ
du

)
where we used Proposition 3.1(5), we then obtain

≤ 1
1 − δ

(
Ž

τj

j−1(t ∧ ζ)
⌈s/µ⌉

+ 2
1 − δ

α

qj−1

)
.

This and (3.19) together conclude the proof. □

The following lemma will allow us to control the fluctuations of the (Y, j + 1)-individuals by
controlling that of the (Y, j)-individuals between [τj+1 , τj+2].
Lemma 3.6. For all j ∈ I, j ≥ j(2), the following process is a square integrable martingale:

(ZY
j (t))t∈[τj+1 ,τj+2)

:= Yj(t)e
−
∫ t

τj+1
Gj(v)dv

− Yj(τj+1) −
∫ t

τj+1

(
1 − α

qj−1

Xj−1(u)
Wj−1(u)

)
µYj−1(u)e

−
∫ u

τj+1
Gj(v)dv

du.

Moreover, for N large enough, for all t ∈ [τj+1 , τj+2 ∧ ζ), one has the following upper bound for
its conditional variance:

Var
(
ZY

j (t)|FN
τj+1

)
≤ 21

µkN
.

Proof. Again, we admit that ZY
j is a square integrable martingale. We have α

qj−1

Xj−1(u)
Wj−1(u) ≤ α

qj−1
,

which tends to 0 as N → ∞ by Proposition 3.1(4). One then gets the upper bound for the
variance as a direct consequence of Lemma 9.27 in [15] (the process Z ′′ used in that Lemma is
introduced in [15, p. 85, below Equation (9.82)]). □

The next lemma shows that the evolution of Yj−1(τj + t) until τj+1 ∧ ζ remains predictable.
Lemma 3.7. For all j ∈ I, j ≥ j(2) + 1, on the event {ζ > τj}, it holds that

P
(∣∣∣∣∣Yj−1(t) − Yj−1(τj)e

∫ t

τj
Gj−1(v)dv

∣∣∣∣∣ ≤ δ⌈s/µ⌉e

∫ t

τj
Gj−1(v)dv

, ∀ t ∈ [τj , τj+1 ∧ ζ]
∣∣∣FN

τj

)

= 1 − o

( 1
kN

)
.
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Furthermore, the same statement holds with Xj−1 instead of Yj−1.

Proof. The statements (2), (3), (4) of Proposition 3.1 hold up to time t on the event {ζ > t}.
Write

Yj−1(t) = e

∫ t

τj
Gj−1(v)dv

(
Yj−1(τj) +

∫ t

τj

(
1 − α

qj

Xj−2(u)
Wj−2(u)

)
µYj−2(u)e

−
∫ u

τj
Gj−1(v)dv

du + ZY
j−1(t)

)
.

(3.20)
We shall bound the two last terms in the above parentheses. By Proposition 3.1(3), one has(

1 − α

qj−1

Xj−2(u)
Wj−2(u)

)
µYj−2(u)e

−
∫ u

τj
Gj−1(v)dv

≤ (1 + δ)se

∫ u

τj−1
Gj−2(v)dv

e
−
∫ u

τj
Gj−1(v)dv

,

now remark that Gj−1(v) = Gj−2(v) + s for all v ∈ [τj , t] (3.11) and obtain

= (1 + δ)se

∫ τj
τj−1

Gj−1(v)dv
e−s(u−τj−1),

then using Proposition 3.1(5),

≤ (1 + δ)2s2

µ
e−s(u−τj−1).

Hence,∫ t

τj

(
1 − α

qj−1

Xj−2(u)
Wj−2(u)

)
µYj−2(u)e

−
∫ u

τj
Gj−1(v)dv

du ≤ (1 + δ)2s

µ
(e−s(τj−τj−1) − e−s(t−τj−1)).

By (3.18), we thus have shown that for N large enough, on the event {ζ > t},∫ t

τj

(
1 − α

qj−1

Xj−2(u)
Wj−2(u)

)
µYj−2(u)e

−
∫ u

τj
Gj−1(v)dv

du ≤ 3 s

µ
× o(1/kN ). (3.21)

Furthermore, using Lemma 3.6 and Doob’s maximal inequality for squared integrable martin-
gales, one has

P
(

sup
t∈[τj ,τj+1)

∣∣∣ZY
j−1(t ∧ ζ)

∣∣∣ >
δ

2⌈s/µ⌉
∣∣∣FN

τj

)
≤ 4

δ2 Var
(
ZY

j−1(τj+1 ∧ ζ)|FN
τj

)
≤ 4µ2

δ2s2
21

µkN
= o

( 1
kN

)
,

by (2.3). Combined with (3.20) and (3.21), this shows that conditionally given ζ > τj , with
probability 1 − o(1/kN ), it holds that∣∣∣∣∣Yj−1(t) − Yj−1(τj)e

∫ t

τj
Gj−1(v)dv

∣∣∣∣∣ ≤ δ⌈s/µ⌉e

∫ t∧ζ

τj
Gj−1(v)dv

, ∀ t ∈ [τj , τj+1 ∧ ζ],

which completes the proof of the statement for Yj−1.
The proof of the statement for Xj−1 is identical. □

3.3.2. The non-early individuals

We will need the following lemma to control the non-early individuals.

Lemma 3.8. For j ∈ I, j ≥ j(2), let W̃j be the process which counts the number of non-early
individuals, i.e. that obtain a jth mutation during [ξj , τj+1) and their descendants of type j, and
Z̃j the associated martingale, that is for all t ∈ [ξj , τj+1]:

Z̃j(t) := e
−
∫ t

ξj
Gj(v)dv

W̃j(t) −
∫ t

ξj

µWj−1(u)e
−
∫ u

ξj
Gj(v)dv

du.
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Then, its conditional variance at time τj+1 satisfies

Var
(
1{ζ>τj+1}Z̃j(τj+1)

∣∣∣FN
ξj

)
≤ Ce

∫ ξj
τj

Gj(v)dv

sk2
N

.

Moreover, denoting (Y ′
j (t))t∈[ξj ,τj+1] the process following the number of non-early (Y̌ , j)-indiv-

iduals, the same upper bound holds for the martingale defined by

Z ′
j(t) := e

−
∫ t

ξj
Gj(v)dv

Y ′
j (t) −

∫ t

ξj

µYj−1(u)e
−
∫ u

ξj
Gj(v)dv

du.

Finally, denoting (X̌ ′
j(t))t∈[ξj ,τj+1] the number of non-early (X̌, j)-individuals, the following pro-

cess, defined for t ∈ [ξj , τj+1], is a mean zero square integrable martingale

ŽX
j (t) := e

−
∫ t

ξj
Gj(v)dv

X̌ ′
j(t) −

∫ t

ξj

µ
α

qj

Xj−1(u)Yj−1(u)
Wj−1(u) e

−
∫ u

ξj
Gj(v)dv

du,

whose conditional variance at time τj+1 satisfies

Var
(
1{ζ>τj+1}ŽX

j (τj+1)
∣∣∣FN

ξj

)
≤ Cαe

∫ ξj
τj

Gj(v)dv

sk3
N

.

Proof. We only show the bound of the variance of ŽX
j since the other statements follow from

Lemma 9.12 in [15] (the ideas of the proof therein are similar to those presented here).
On the event {ζ > ξj}, the formula for the variance is

Var
(
1{ζ>τj+1}ŽX

j (τj+1)
∣∣∣FN

ξj

)
= E

(
1{ζ>τj+1}

∫ τj+1

ξj

due
−2
∫ u

ξj
Gj(v)dv

(
µ

α

qj

Xj−1(u)Yj−1(u)
Wj−1(u) + (Bj(u) + Dj(u))X̌ ′

j(u)
)∣∣∣∣∣FN

ξj

)
(3.22)

We focus on the first term in the parentheses. Since both Xj−1(u) and Yj−1(u) are smaller than
Wj−1(u) by definition, Proposition 3.1(3) shows that∫ τj+1

ξj

due
−2
∫ u

ξj
Gj(v)dv

µ
α

qj

Xj−1(u)Yj−1(u)
Wj−1(u)

≤ (1 + δ)µ α

qj
⌈s/µ⌉e

∫ ξj
τj

Gj−1(v)dv
∫ τj+1

ξj

due
−
∫ u

ξj
Gj(v)dv

e−s(u−ξj)

≤ Cs
α

qj
e

∫ ξj
τj

Gj−1(v)dv
∫ τj+1

ξj

due
−
∫ u

ξj
Gj(v)dv

e−s(u−ξj),

we then use Proposition 3.1(4) and we get

≤ Cs
α

qj
e

∫ ξj
τj

Gj−1(v)dv
∫ τj+1

ξj

due−s(qj−C1+1)(u−ξj)

≤ C
α

qj
e

∫ ξj
τj

Gj−1(v)dv 1
qj − C1 + 1 .

By Proposition 3.1(4), we obtain that on the event ζ > τj+1,

∫ τj+1

ξj

due
−2
∫ u

ξj
Gj(v)dv

µ
α

qj

Xj−1(u)Yj−1(u)
Wj−1(u) ≤ Cα

e

∫ ξj
τj

Gj−1(v)dv

k2
N

(3.23)
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For the other term of the variance, by (3.12), we have

E
(
1{ζ>τj+1}

∫ τj+1

ξj

due
−2
∫ u

ξj
Gj(v)dv

(Bj(u) + Dj(u))X̌ ′
j(u)

∣∣∣FN
ξj

)

≤ 3E
(
1{ζ>τj+1}

∫ τj+1

ξj

due
−2
∫ u

ξj
Gj(v)dv

X̌ ′
j(u)

∣∣∣FN
ξj

)

= 3E
(
1{ζ>τj+1}

∫ τj+1

ξj

due
−
∫ u

ξj
Gj(v)dv

×
(

ŽX
j (u) + µ

α

qj

∫ u

ξj

e
−
∫ r

ξj
Gj(v)dv Xj−1(r)Yj−1(r)

Wj−1(r) dr

)∣∣∣∣∣FN
ξj

)
.

We bound the term with Xj−1Yj−1/Wj−1 ≤ Wj−1 using Proposition 3.1(3) and we upper bound
−Gj(v) ≤ −s(qj − C1) with the Proposition 3.1(4). Integrating u from ξj to ∞, we can use the
martingale property of ŽX

j to bound from above the right-hand side by

Cs
α

qj
e

∫ ξj
τj

Gj−1(v)dv
∫ ∞

ξj

due−s(qj−C1)(u−ξj)
∫ u

ξj

dre−s(r−ξj).

We use that
∫ u

ξj
dre−s(r−ξj) = 1

s (1 − e−s(u−ξj)) to write

E
(∫ τj+1∧ζ

ξj

due
−2
∫ u

ξj
Gj(v)dv

(Bj(u) + Dj(u))X̌ ′
j(u)

∣∣∣∣∣FN
ξj

)

≤ Cα

qj
e

∫ ξj
τj

Gj−1(v)dv
∫ ∞

ξj

du
(
e−s(qj−C1)(u−ξj) − e−s(qj−C1+1)(u−ξj)

)

≤ Cαe

∫ ξj
τj

Gj−1(v)dv

qj

(
1

s(qj − C1) − 1
s(qj − C1 + 1)

)

≤ Cαe

∫ ξj
τj

Gj−1(v)dv

sq3
j

≤ Cαe

∫ ξj
τj

Gj−1(v)dv

sk3
N

,

where we used Proposition 3.1(4) for the last inequality. The claim follows since we now bounded
the two terms of the variance (3.22), the first one in (3.23), thus concluding the proof. □

3.3.3. After an early mutation

We now investigate the impact of an early mutation on the proportions. The next lemma essen-
tially states that the difference between the proportion of (Y̌ , j − 1)-individuals among the type
j − 1 individuals at time τj to the proportion of (Y, j) among the type j individuals at time τj+1
is mostly determined by the number of early type j individuals.

Lemma 3.9. Let j ∈ I, j ≥ j(2) and let S be the proportion of early type j individuals at time
τj+1. Conditionally given FN

τj
, on the event {ζ > τj+1}, the following holds with probability at

least 1 − Cϵ/kN : If S > 0, then the early individuals have the same ancestor at time τj, and if
it belongs to the group X, then

Yj−1(τj)(1 − S) − 8δ⌈s/µ⌉ ≤ Y̌j(τj+1) ≤ Yj−1(τj)(1 − S) + 8δ⌈s/µ⌉.

Similarly, if the ancestor belongs to the group Y , then

S⌈s/µ⌉ + Yj−1(τj)(1 − S) − 8δ⌈s/µ⌉ ≤ Y̌j(τj+1) ≤ S⌈s/µ⌉ + Yj−1(τj)(1 − S) + 8δ⌈s/µ⌉.
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Proof. Recall the notation W̃j and Y ′
j for the processes following the non-early type j individuals,

respectively the non-early type (Y̌ , j)-individuals. We write

Y ′
j (τj+1)

W̃j(τj+1)
=

e

∫ τj+1
ξj

Gj(v)dv
(∫ τj+1

ξj
µYj−1(u)e

−
∫ u

ξj
Gj(v)dv

du + Z ′
j(τj+1)

)
W̃j(τj+1)

,

where Z ′
j is a martingale defined in Lemma 3.8. Using Proposition 3.1(2) and Lemma 3.7, one

has with probability at least 1 − o(1/kN ) that

Y ′
j (τj+1)

W̃j(τj+1)
≤ e

−
∫ ξj

τj
Gj(v)dv

1 − 4δ

((
Yj−1(τj)

⌈s/µ⌉
+ δ

)∫ τj+1

ξj

se−s(u−ξj)due

∫ ξj
τj

Gj−1(v)dv
+ Z ′

j(τj+1)
)

. (3.24)

We compute
∫ τj+1

ξj
se−s(u−ξj)du = 1 − e−s(τj+1−ξj), and claim that this converges to 1 as N →

∞. Indeed, we first write e−s(ξj−τj) = (sqj)1/qj e−b/qj , and use that on the event {ζ > τj+1},
Proposition 3.1(4) shows that

(skN (1 − 2δ))1/kN (e+2δ)e−b/kN (1−2δ) ≤ (sqj)1/qj e−b/qj ≤ (skN (e + 2δ)))1/kN (1−2δ). (3.25)

Taking the logarithm of the left-hand side, we get
1

(1 − 2δ)kN
(log s + log kN + log(1 − 2δ)) .

The second and third terms vanish as N → ∞ since kN → ∞, and this is also the case of the
first term thanks to Assumption (A1), hence the lower bound of (3.25) tends to 1 as N → ∞.
The same reasoning shows that the upper bound of (3.25) converges to 1 as well. Thus, on the
event {ζ > τj+1}, it holds that

e−s(ξj−τj) = (sqj)1/qj e−b/qj −→
N→∞

1. (3.26)

We then write

e−s(τj+1−ξj) = e−s(τj+1−τj)es(ξj−τj) = o(1/kN ),

where we have used (3.18). Coming back to (3.24), this gives

Y ′
j (τj+1)

W̃j(τj+1)
≤ 1

1 − 4δ

((
Yj−1(τj)

⌈s/µ⌉
+ δ

)
+ e

−
∫ ξj

τj
Gj(v)dv

Z ′
j(τj+1)

)
. (3.27)

Applying Lemma 3.8 and Doob’s maximal inequality for squared integrable martingales, one
has

P
(
1{ζ>τj+1}

∣∣∣Z ′
j(τj+1)

∣∣∣ > δe

∫ ξj
τj

Gj(v)dv
∣∣∣∣FN

ξj

)
≤ C

e
−
∫ ξj

τj
Gj(v)dv

δ2sk2
N

.

On the event {ζ > τj+1} a double application of Proposition 3.1(4) gives

e
−
∫ ξj

τj
Gj(v)dv

≤ e−s(qj−C1)(ξj−τj) ≤ sqje−b(1 + δ) ≤ CskN e−b.

(Since skN → 0 as N → ∞, the constant C1 has been absorbed in C, which does not depend on
the parameters ϵ, δ, T .) Hence,

P
(
1{ζ>τj+1}

∣∣∣Z ′
j(τj+1)

∣∣∣ > δe

∫ ξj
τj

Gj(v)dv
∣∣∣∣FN

ξj

)
≤ Ce−b

δ2kN
≤ Cϵ

kN
,
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where we used (3.1) and (3.9) for the last inequality (since we chose the constant T > 2, we
replaced it by 2 in the denominator to absorb it in C). This result combined with (3.27) entails
that, on the event {ζ > τj+1}, with a probability greater than 1 − Cϵ/kN :

Y ′
j (τj+1)

W̃j(τj+1)
≤ 1

1 − 4δ

(
Yj−1(τj)

⌈s/µ⌉
+ 2δ

)
≤ Yj−1(τj)

⌈s/µ⌉
+ 7δ.

For the lower bound, the same reasoning as for the upper bound gives
Y ′

j (τj+1)
W̃j(τj+1)

≥ 1
1 + 4δ

(
Yj−1(τj)

⌈s/µ⌉
− 3δ

)
≥ Yj−1(τj)

⌈s/µ⌉
− 8δ.

Since W̃ (τj+1) = (1 − S)⌈s/µ⌉, homogenizing the bounds, we get

Yj−1(τj)
⌈s/µ⌉

− 8δ ≤
Y ′

j (τj+1)
(1 − S)⌈s/µ⌉

≤ Yj−1(τj)
⌈s/µ⌉

+ 8δ

To conclude, conditionally given FN
τj

, Lemma 7.5 in [16] bounds from above the probability that
two early mutations survive by 2e2b/q2

j ≤ 3e2b/k2
N . Then, excluding this event, if there is an

early mutation in the group X, easy calculations lead to

Yj−1(τj)(1 − S) − 8δ⌈s/µ⌉ ≤ Y̌j(τj+1) ≤ Yj−1(τj)(1 − S) + 8δ⌈s/µ⌉,

S⌈s/µ⌉ + Xj−1(τj)(1 − S) − 8δ⌈s/µ⌉ ≤ Xj(τj+1) − X̌j(τj+1)
≤ S⌈s/µ⌉ + Xj−1(τj)(1 − S) + 8δ⌈s/µ⌉.

The cases where the early mutant is a Y -individual is identical, which concludes the proof. □

3.3.4. The discrete proportions process

To ensure that our description of the evolution of the proportions is accurate enough, we intro-
duce a stopped discrete time process as follows. For all j ∈ I, j ≥ j(2) − 1, we define

YN
j :=

Yj∧(j(ζ/aN )−1)(τ(j+1)∧j(ζ/aN ))
⌈s/µ⌉

,

which follows the proportion of Y -individuals among the fittest at each time τj stopped at
the last type j before j(ζ/AN ) (recall that j(ζ/aN ) defined in (2.6) is the largest j such that
τj ≤ aN ζ). The reason to stop the process at j(ζ/aN ) is to ensure that the results above and in
particular Proposition 3.1 apply to Yj .

Similarly, we denote by Y̌N
j the process defined with Y̌j∧(j(ζ/aN )−1)(τ(j+1)∧j(ζ/aN )) in place of

Yj∧(j(ζ/aN )−1)(τ(j+1)∧j(ζ/aN )), i.e. the process following the proportion of (Y, j)-individuals where
the killings of the type j mutations have been cancelled (and only those ones). We stress that
the event {ζ > τj+1} is included in the above definition, in the sense that the process stops
evolving at the last τj ≤ ζ, and this fact will be kept implicit when working with Y or Y̌.

We now give a lemma controlling the two first moments of the proportions’ increments in the
absence of weak selection, when there is no early mutation, or one that does not generate a too
large family.

Lemma 3.10. Let Sj be the proportion of early type j individuals at time τj+1 among the type
j individuals (potentially, Sj can be 0). For all j ∈ I, j ≥ j(2), it holds that

E
(
Y̌N

j − YN
j−1

∣∣∣FN
τj

)
= o (1/kN ) ,

E
(
1{Sj≤ϵ}

(
Y̌N

j − YN
j−1

)2 ∣∣∣FN
τj

)
≤ Cϵ

kN
.
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Proof. Throughout the proof, we say population for the population of individuals for which the
weak selection between the last time interval [τj , τj+1] has been cancelled (but for which the
killings that occurred before τj are kept). We will thus speak of type (Y̌ , j)-individuals.

Fix j ∈ I, j ≥ j(2). We first note that

Y̌N
j − YN

j−1 = 1{ζ>τj+1}
Y̌j(τj+1) − Yj−1(τj)

⌈s/µ⌉
.

We call a Y -individual of type j at time τj+1 good if his ancestor at time τj is of type j − 1. We
denote by Ŷj(τj+1) the number of good Y̌ individuals at time τj+1, and Kj , respectively KY̌ ,j

the number of type j individuals in the population, respectively of type (Y̌ , j), at time τj+1 that
are not good. We have

Y̌j(τj+1) = KY̌ ,j + Ŷj(τj+1).

We pick an individual uniformly at random among the ⌈s/µ⌉ individuals of type j at time τj+1.
Note that he belongs to the group of good Y̌ -individuals if and only if his ancestor at time τj is
in the group Y with type j −1, and we call this event B. Let janc ∈ N be the type of his ancestor
at time τj . We have in particular that P(B|FN

τj
, janc = j − 1, ζ > τj+1) = Yj−1(τj)/⌈s/µ⌉, since

his ancestor is chosen uniformly at random among the ⌈s/µ⌉ individuals of type j − 1 at time
τj . Using that {ζ > τj+1} is FN

τj+1-measurable, we then write

E
(
1{ζ>τj+1}

Ŷj(τj+1)
⌈s/µ⌉

∣∣∣FN
τj

)
= E

(
1{ζ>τj+1}P

(
B
∣∣FN

τj+1

) ∣∣∣FN
τj

)
= P

(
B ∩ {ζ > τj+1}

∣∣∣FN
τj

)
= P

(
B
∣∣∣FN

τj
, janc = j − 1, ζ > τj+1

)
P
(
janc = j − 1, ζ > τj+1

∣∣∣FN
τj

)
= Yj−1(τj)

⌈s/µ⌉
P
(
janc = j − 1, ζ > τj+1

∣∣∣FN
τj

)
.

Basic properties of probability measures entail that

Yj−1(τj)
⌈s/µ⌉

(
P(ζ > τj+1|FN

τj
) − P(ζ > τj+1, janc ̸= j − 1|FN

τj
)
)

≤ E
(
1{ζ>τj+1}

Ŷj(τj+1)
⌈s/µ⌉

∣∣∣FN
τj

)
≤ Yj−1(τj)

⌈s/µ⌉
P(ζ > τj+1|FN

τj
).

Since P(ζ > τj+1, janc ̸= j − 1|FN
τj

) = E(1{ζ>τj+1}Kj/⌈s/µ⌉|FN
τj

), we have shown that

∣∣∣E (Y̌N
j − YN

j−1

∣∣∣FN
τj

)∣∣∣ ≤ E
(
1{ζ>τj+1}

KY̌ ,j

⌈s/µ⌉

∣∣∣FN
τj

)
+ P

(
ζ > τj+1, janc ̸= j − 1|FN

τj

)
≤ 2E

(
1{ζ>τj+1}

Kj

⌈s/µ⌉

∣∣∣FN
τj

)
≤
(

µ

s

)1/3kN

, (3.28)

where the last inequality is from [16, Lemma 6.3] and, taking the logarithm and using Assump-
tion (A2), one can show that the bound is o(1/kN ).

We turn our attention to the moment of order two. Suppose now that we independently
sample two individuals, possibly the same, uniformly at random among the ⌈s/µ⌉ individuals
of type j at time τj+1. Denote janc and j′

anc the types of their respective ancestors at time τj

and let B′ be the event that they both belong to the good Y̌ group. Let D be the event that
the two ancestors are different with janc = j′

anc = j − 1. Recall that given D, the ancestors are
exchangeable. In particular, given D, the ancestor of the first individual is chosen uniformly
at random among the ⌈s/µ⌉ individuals of type j − 1 at time τj , and then the ancestor of the
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second one is chosen uniformly at random among the ⌈s/µ⌉ − 1 that remain, the two ancestors
being independent from Sj . We get that

E

1{ζ>τj+1,Sj≤ϵ}

(
Ŷj(τj+1)

⌈s/µ⌉

)2 ∣∣∣FN
τj

 = P
(
B′ ∩ {ζ > τj+1, Sj ≤ ϵ}

∣∣∣FN
τj

)
= P

(
B′
∣∣∣FN

τj
, D ∩ {ζ > τj+1, Sj ≤ ϵ}

)
P
(
D ∩ {ζ > τj+1, Sj ≤ ϵ}

∣∣∣FN
τj

)
+ P

(
B′ ∩ Dc ∩ {ζ > τj+1, Sj ≤ ϵ}

∣∣∣FN
τj

)
≤
(

Yj−1(τj)
⌈s/µ⌉

)2
P(ζ > τj+1, Sj ≤ ϵ|FN

τj
) + P

(
B′ ∩ Dc ∩ {ζ > τj+1, Sj ≤ ϵ}

∣∣∣FN
τj

)
. (3.29)

Note that B′ ∩ Dc is included in the event that the two sampled individuals have the same
ancestor of type j − 1 at time τj . The probability to pick twice the same individual is 1/⌈s/µ⌉.
In particular, Equation (8.16) in [16] implies that the probability that two type j individuals at
time τj+1 have the same ancestor at time τj is bounded by Cϵ/kN , so that P(B′ ∩ Dc ∩ {ζ >
τj+1, Sj ≤ ϵ}|FN

τj
) ≤ Cϵ/kN . However, this probability of coalescence is not computed explicitly;

we give the notation and arguments in order to read Equation (8.16) in [16] and deduce from it
the bound for the probability of coalescence (we do not reprove the claim):

• Π∗
N is a coalescent process that coincides at all times τℓ, ℓ ∈ I with high probability

(see [16, Lemma 8.2] and use the bounds derived in its proof before summing over j ∈ I)
with the coalescent ΠN that describes the genealogy of the population,

• Yj corresponds to our Sj ,

• the event Ψj is defined in the beginning of the proof of Lemma 8.8, with probability
converging to 1 as N → ∞ thanks to Lemma 7.4 and 7.7 in [16].

Therefore, the bound in [16] Equation (8.16) holds true with ΠN in place of Π∗
N and it follows

that P(B′ ∩ Dc ∩ {ζ > τj+1, Sj ≤ ϵ}|FN
τj

) ≤ Cϵ/kN .
Hence, by (3.29), we obtain that

E
(
1{Sj≤ϵ}

(
Y̌N

j − YN
j−1

)2 ∣∣∣FN
τj

)
≤ 2E

(
1{ζ>τj+1}

(
Kj

⌈s/µ⌉

)2 ∣∣∣FN
τj

)

+ 2E
(
1{ζ>τj+1,Sj≤ϵ}

1
⌈s/µ⌉2

(
Ŷj(τj+1)2 − 2Ŷj(τj+1)Yj−1(τj) + Yj−1(τj)2

) ∣∣∣FN
τj

)
≤ 2E

(
1{ζ>τj+1}

(
Kj

⌈s/µ⌉

) ∣∣∣FN
τj

)2
+ Cϵ

kN

≤ Cϵ

kN
,

as claimed, where we used the last inequality in (3.28). This concludes the proof. □

3.3.5. Weak selection

For Lemma 3.10 to be useful, it needs to be combined with a description of the number of type j
individuals at time τj+1 descending from killings between [τj , τj+1], that is X̌j(τj+1). Note that
in Lemma 3.8, the martingale ŽX

j is constructed from X̌ ′
j , namely the (X, j)-individuals coming

from non-early killings, that is to say, killings occurring after time ξj . Nonetheless, on the event
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{ζ > τj+1}, it holds that X̌ ′
j(τj+1) = X̌j(τj+1), by definition of ζ, see the discussion following

Lemma 3.4. Hence, the expected effect of the weak selection on the proportions from τj to τj+1
can be estimated:

Lemma 3.11. For all j ∈ I, j ≥ j(2), on the event {ζ > τj}, it holds that

E
(
1{ζ>τj+1}e

−
∫ τj+1

τj
Gj(v)dv

X̌j(τj+1)
∣∣∣FN

τj

)
= α

qj

Xj−1(τj)Yj−1(τj)
⌈s/µ⌉2 + O

(
ϵ(α +

√
α)

kN

)
,

E
(
1{ζ>τj+1}

X̌j(τj+1)
⌈s/µ⌉

∣∣∣FN
τj

)
= α

qj

Xj−1(τj)Yj−1(τj)
⌈s/µ⌉2 + O

(
ϵ(1 + α +

√
α)

kN

)
,

E
(
1{ζ>τj+1}

X̌j(τj+1)2

⌈s/µ⌉2

∣∣∣FN
τj

)
= o

( 1
kN

)
.

Proof. We address the first claim. Using the martingale ŽX
j from Lemma 3.8, we can then

combine Proposition 3.1(3) and Lemma 3.7 and see that

1{ζ>τj+1}e
−
∫ τj+1

τj
Gj(v)dv

X̌j(τj+1)

= 1{ζ>τj+1}

(
e

−
∫ ξj

τj
Gj(v)dv

ŽX
j (τj+1) +

∫ τj+1

ξj

e
−
∫ u

τj
Gj(v)dv

µ
α

qj

Xj−1(u)Yj−1(u)
Wj−1(u) du

)

= 1{ζ>τj+1}

(
e

−
∫ ξj

τj
Gj(v)dv

ŽX
j (τj+1) + µ

α

qj

(
Xj−1(τj)Yj−1(τj)

⌈s/µ⌉
+ O

(
δ

s

µ

))∫ τj+1

ξj

e−s(u−τj)du

)

= 1{ζ>τj+1}

(
e

−
∫ ξj

τj
Gj(v)dv

ŽX
j (τj+1)+ α

qj

Xj−1(τj)Yj−1(τj)
⌈s/µ⌉2

(
e−s(ξj−τj) −e−s(τj+1−τj)

)
+ O (δα)

qj

)
.

Recall (3.26) and (3.18), so that e−s(ξj−τj) − e−s(τj+1−τj) → 1 as N → ∞. Using Proposi-
tion 3.1(4), the above hence becomes

1{ζ>τj+1}e
−
∫ τj+1

τj
Gj(v)dv

X̌j(τj+1)

= 1{ζ>τj+1}

(
e

−
∫ ξj

τj
Gj(v)dv

ŽX
j (τj+1) + α

qj

Xj−1(τj)Yj−1(τj)
⌈s/µ⌉2 + O

(
δα

kN

))
. (3.30)

We use Cauchy–Schwarz inequality and Lemma 3.8 to bound the expectation of the first term:∣∣∣∣∣E
(
1{ζ>τj+1}e

−
∫ ξj

τj
Gj(v)dv

ŽX
j (τj+1)

∣∣∣FN
τj

)∣∣∣∣∣
≤ CE

(
1{ζ>τj+1}e

−2
∫ ξj

τj
Gj(v)dv∣∣∣FN

τj

)1/2

E
(
1{ζ>τj+1}

αe

∫ ξj
τj

Gj(v)dv

sq3
j

∣∣∣FN
τj

)1/2

.

By Proposition 3.1(4), we have

E
(
1{ζ>τj+1}e

−2
∫ ξj

τj
Gj(v)dv∣∣∣FN

τj

)
≤ e−2s(qj−C1)(ξj−τj),

Recalling the definition of ξj in (3.10) and using Proposition 3.1(4), the right-hand side above
reads as

(sqj)2s(qj−C1)/sqj e−2b ≤ (skN (e + 2δ))2(1−C1/qj)e−2b ≤ C(skN )2(skN )−2C1/(1−2δ)kN e−2b.
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Moreover, since skN → 0 by Assumption (A3), we have (skN )−2C1/(1−2δ)kN ≤ s−2C1/(1−2δ)kN ,
which tends to 1 since by Assumption (A1), kN / log(1/s) → ∞ as N → ∞ so that s1/kN → 1.

Similarly with Proposition 3.1(4), one can show that e

∫ ξj
τj

Gj(v)dv
≤ C(skN )−1eb and we see that∣∣∣∣∣E

(
1{ζ>τj+1}e

−
∫ ξj

τj
Gj(v)dv

ŽX
j (τj+1)

∣∣∣FN
τj

)∣∣∣∣∣ ≤ C
√

α((skN )2e−2b)1/2(s−2k−4
N eb)1/2

≤ C
√

α

kN
e−b/2 ≤ C

√
αδ

kN
,

by Assumption (A3) and the definition of b in (3.9). Therefore taking the expectation in (3.30)
yields

E
(
1{ζ>τj+1}e

−
∫ τj+1

τj
Gj(v)dv

X̌j(τj+1)
∣∣∣FN

τj
, {ζ > τj}

)
= α

qj

Xj−1(τj)Yj−1(τj)
⌈s/µ⌉2 P

(
ζ > τj+1

∣∣∣FN
τj

, {ζ > τj}
)

+ O

(
δ(α +

√
α)

kN

)
.

Since P(ζ > τj+1) ≥ P(ζ > aN T ) ≥ 1 − ϵ and δ < ϵ by (3.1), the proof of the first statement of
the lemma is complete.

To prove the second claim, let Sj be the number of early type j individuals alive at time τj+1.
It suffices to show that the following is of order ϵ/kN :

E
(
1{ζ>τj+1}

∣∣e−
∫ τj+1

τj
Gj(v)dv

− 1
⌈s/µ⌉

∣∣X̌j(τj+1)
∣∣∣FN

τj

)
= E

(
1{ζ>τj+1}(1{Sj=0} + 1{Sj>0})

∣∣e−
∫ τj+1

τj
Gj(v)dv

− 1
⌈s/µ⌉

∣∣X̌j(τj+1)
∣∣∣FN

τj

)
. (3.31)

Then, by Proposition 3.1(2), the term with 1{S=0} is bounded from above by

4δ

1 − 4δ
e

−
∫ τj+1

τj
Gj(v)dv

− 1
⌈s/µ⌉

X̌j(τj+1),

where we also got rid of 1{Sj=0}. Taking the expectation, we get

E
(
1{ζ>τj+1,Sj=0}

∣∣e−
∫ τj+1

τj
Gj(v)dv

− 1
⌈s/µ⌉

∣∣X̌j(τj+1)
∣∣∣FN

τj

)
≤ Cδ

(
1
qj

+ ϵ

kN

)
= O

(
ϵ

kN

)
,

where we used Proposition 3.1(4) and (3.1) for the last inequality.
It remains to bound the term with 1{Sj>0} in (3.31). By Cauchy–Schwarz’s inequality, we can

bound its expectation by

P
(
ζ > τj+1, Sj > 0

∣∣FN
τj

)1/2
E

(1{Sj>0}
X̌j(τj+1)

⌈s/µ⌉

)2 ∣∣FN
τj

1/2

.

By Lemma 7.5 in [16], we know that P(Sj > 0|FN
τj

) ≤ Ceb/qj , which can further be bounded by
Ceb/kN using Proposition 3.1(4). Therefore, using the third claim of the lemma (proved below),
we see that the above is bounded by o(1/kN ). Using (3.31) with the first claim proves the second
claim of the lemma.

We now show the last identity of the lemma. We simply note that elevating to the square then
taking the expectation in (3.30) and using the same approximations as throughout the proof
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implies that

E
(
1{ζ>τj+1}e

−2
∫ τj+1

τj
Gj(v)dv

X̌j(τj+1)2|FN
τj

)
≤
(

C(sqj)2e−2b Var
(
1{ζ>τj+1}ŽX

j (τj+1)|FN
τj

)
+ Cα2

k2
N

)
= O

(
1

k2
N

)
.

The use of Proposition 3.1(5) concludes the proof. □

4. Convergence towards the SDE.

In this section, our strategy to show the convergence is very common when showing convergence
of a Markov process to the solution of a SDE: we first establish tightness, then look at the
infinitesimal generator, and show that any weak limit solves a martingale problem associated to
the SDE. The next lemma addresses the tightness of (YN

t )t∈[2 ,T −1].

Lemma 4.1. Recall that YN
2 = yN with yN → y ∈ (0 , 1). The sequence {(YN (t))t∈[2 ,T −1]; N ∈

N} is tight.

Proof. The proof uses Aldous’ criterion for tightness, stated e.g. in [10, Chapter VI Theorem 4.5].
Let λ, θ > 0 and let σ, σ′ denote any two stopping times with respect to the filtration FN , that
are bounded by T − 1, and such that σ ≤ σ′ ≤ σ + θ. Splitting the following probability on the
events {ζ > aN T} and its complement entails that

P
(
|YN

σ′ − YN
σ | > λ

)
≤ P

(
ζ > aN T, |YN

σ′ − YN
σ | > λ

)
+ ϵ

≤ λ−2E
(
E
(
1{ζ>aN T }

(
YN

σ′ − YN
σ

)2 ∣∣∣FN
τj(σ)

))
+ ϵ. (4.1)

We rewrite the conditional expectation as

E
(
1{ζ>aN T }

( j(σ′)−1∑
j=j(σ)

YN
j − YN

j−1

)2∣∣∣FN
τj(σ)

)

≤ 2E
(
1{ζ>aN T }

(( j(σ′)−1∑
j=j(σ)

Y̌N
j − YN

j−1

)2

+
( j(σ′)−1∑

j=j(σ)

X̌j(τj+1)
⌈s/µ⌉

)2)∣∣∣FN
τj(σ)

)
, (4.2)

where we used that (x + y)2 ≤ 2x2 + 2y2. Recall that on the event {ζ > aN T}, the number of
j ≥ 1 such that aN σ ≤ τj ≤ aN σ′ is at most ⌈3kN θ⌉ by Proposition 3.1(1). We bound the first
sum above by

E
(( j(σ′)−1∑

j=j(σ)
Y̌N

j − YN
j−1

)2∣∣∣FN
τj(σ)

)

≤ 2E
( j(σ)+⌈3kN θ⌉∑

j=j(σ)

(
Y̌N

j − YN
j−1

)2
+ 2

j(σ′)−1∑
j,ℓ=j(σ)

j<ℓ

(
Y̌N

j − YN
j−1

) (
Y̌N

ℓ − YN
ℓ−1

) ∣∣∣FN
τj(σ)

)
.

We now bound the first sum of the right-hand side. Let Sj be the number of early type j
individuals at time τj+1. Using our Lemma 3.10 and Lemma 7.8 in [16], we have the following
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bound
j(σ)+⌈3kN θ⌉∑

j=j(σ)
E
(
E
(
(Y̌N

j − YN
j−1)2

∣∣∣FN
τj

) ∣∣∣FN
τj(σ)

)

≤
j(σ)+⌈3kN θ⌉∑

j=j(σ)

(
Cϵ

kN
+ E

(
P
(
Sj > ϵ, ζ > τj+1|FN

τj

) ∣∣∣FN
τj(σ)

))
≤ Cϵθ + θ

ϵ
≤ C

θ

ϵ
.

We next turn our attention to the double sum, we write
j(σ′)−1∑
j,ℓ=j(σ)

j<ℓ

(
Y̌N

j − YN
j−1

) (
Y̌N

ℓ − YN
ℓ−1

)
≤ sup

n≤⌈3kN θ⌉

j(σ)+n∑
j,ℓ=j(σ)

j<ℓ

(
Y̌N

j − YN
j−1

) (
Y̌N

ℓ − YN
ℓ−1

)
,

therefore we have that∣∣∣∣∣E
( j(σ′)−1∑

j,ℓ=j(σ)
j<ℓ

(
Y̌N

j − YN
j−1

) (
Y̌N

ℓ − YN
ℓ−1

) ∣∣∣FN
τj(σ)

)∣∣∣∣∣
≤ sup

n≤⌈3kN θ⌉

∣∣∣∣∣
j(σ)+n∑
j,ℓ=j(σ)

j<ℓ

E
((

Y̌N
j − YN

j−1

)
E
(
Y̌N

ℓ − YN
ℓ−1

∣∣∣FN
τℓ

) ∣∣∣FN
τj(σ)

)∣∣∣∣∣
=

j(σ)+⌈3kN θ⌉∑
j,ℓ=j(σ)

j<ℓ

E
(∣∣∣Y̌N

j − YN
j−1

∣∣∣ ∣∣∣FN
τj(σ)

)
× o

( 1
kN

)
= o(1),

by Lemma 3.10.
We now bound the second sum in (4.2). Proceeding similarly as before, we obtain

E
(
1{ζ>aN T }

( j(σ′)−1∑
j=j(σ)

X̌j(τj+1)
⌈s/µ⌉

)2∣∣∣FN
τj(σ)

)

≤ E
(
1{ζ>aN T }

j(σ)+⌈3kN θ⌉∑
j=j(σ)

(
X̌j(τj+1)

⌈s/µ⌉

)2

+
j(σ)+⌈3kN θ⌉∑

j,ℓ=j(σ)
j<ℓ

X̌j(τj+1)
⌈s/µ⌉

E
(
1{ζ>aN T }

X̌ℓ(τℓ+1)
⌈s/µ⌉

∣∣∣FN
τℓ

) ∣∣∣FN
τj(σ)

)

≤ ⌈3kN θ⌉o

( 1
kN

)
+ ⌈3θkN ⌉2 × C(1 + α +

√
α)

k2
N

≤ θC(1 + α +
√

α),

by Lemma 3.11. Hence, coming back to (4.1), we have shown that for all λ > 0, it holds that

lim
θ→0

lim sup
N→∞

sup
σ,σ′

P
(
|YN

σ′ − YN
σ | > λ

)
≤ λ−2 lim

θ→0

(
C(1 + α +

√
α)θ + C

θ

ϵ
+ ϵ

)
= λ−2ϵ.

Since the left-hand side does not depend on ϵ, its value is simply 0, which shows that the sequence
is tight by Aldous’ criterion for tightness. □

Define

∆j := τj+1 − τj

aN
. (4.3)
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Even though {YN
j ; j ∈ I, j ≥ j(2) − 1} is not Markovian, we shall mimic a classical method for

showing convergence of a Markov process through its infinitesimal generator.

Lemma 4.2. On the event {ζ > τj+1}, for all f ∈ C∞([0 , 1]), all j ∈ I, j ≥ j(2) and N large
enough, it holds that∣∣∣∣ 1

∆j
E
(
f(YN

j ) − f(YN
j−1)

∣∣∣FN
τj

)
+ αYN

j−1(1 − YN
j−1)f ′(YN

j−1)

−
∫ 1

0

dx

x2

∫ 1

0
du
(
f

(
YN

j−1(1 − x) + x1{u≤YN
j−1}

)
− f

(
YN

j−1

) )∣∣∣∣
≤ Cϵ(1 + α +

√
α)(∥f∥∞ + ∥f ′∥∞ + ∥f ′′∥∞).

Proof. Let X̌N
j := X̌j(τj+1)/⌈s/µ⌉. We write

E
(
f(YN

j ) − f(YN
j−1)|FN

τj

)
= E

((
f
(
Y̌N

j − X̌N
j

)
− f(YN

j−1)
) ∣∣∣FN

τj

)
= E

((
f
(
Y̌N

j − X̌N
j

)
− f

(
Y̌N

j

)
+ f

(
Y̌N

j

)
− f(YN

j−1)
)∣∣∣FN

τj

)
= E

((
− X̌N

j f ′
(
Y̌N

j

)
+ O

(
(X̌N

j )2
)

∥f ′′∥∞ + f
(
Y̌N

j

)
− f(YN

j−1)
)∣∣∣FN

τj

)
,

where we used the Taylor–Lagrange formula. The second term is

E
(
O((X̌j)2)|FN

τj

)
= o

( 1
kN

)
,

by using Lemma 3.11. We then focus on the first term. We have

E
(
X̌N

j f ′
(
Y̌N

j

) ∣∣∣FN
τj

)
= E

(
X̌N

j f ′
(
YN

j−1

)
+ O(Y̌N

j − YN
j−1)

∣∣∣FN
τj

)
= α

qj
YN

j−1(1 − YN
j−1)f ′(YN

j−1) + O

(
ϵ(1 + α +

√
α)

kN

)
+ o

( 1
kN

)
,

by Lemmas 3.11 and 3.10. We thus have shown that

E
(
f(YN

j ) − f(YN
j−1)|FN

τj

)
= − α

qj
Yj−1(1 − Yj−1)f ′(YN

j−1) + O

(
ϵ(1 + α +

√
α)

kN

)

+ E
(

f
(
Y̌N

j

)
− f(YN

j−1)
∣∣∣FN

τj

)
. (4.4)

We address the last term as follows: let Sj be the number of early type j individuals at time
τj+1, we use Taylor–Lagrange Formula to get the existence of ξ strictly between Y̌N

j and YN
j−1

such that

1{Sj<ϵ}
(
f
(
Y̌N

j

)
− f(YN

j−1)
)

= 1{Sj<ϵ}

((
Y̌N

j − YN
j−1

)
f ′(YN

j−1) +
(
Y̌N

j − YN
j−1

)2
f ′′(ξ)

)
.

Therefore, applying Lemma 3.10, we see that∣∣∣E (1{Sj<ϵ}
(
f
(
Y̌N

j

)
− f(YN

j−1)
) ∣∣∣FN

τj

)∣∣∣ ≤ o

( 1
kN

)
∥f ′∥∞ + O

(
ϵ

kN

)
∥f ′′∥∞

We now turn our attention to the difference when an early mutation generates a large family. In
the proof of Lemma 3.10, we introduced the notion of “good” type j individuals at time τj+1,
that are those whose ancestor at time τj is of type j − 1. We denoted the number of individuals
of type j at time τj+1 that are not good by Kj . Recall that by Proposition 3.1(1), we know
that the ancestors at time τj of these Kj individuals are not of type greater or equal to j. On

112



Moran model with simultaneous strong and weak selections

the other hand, Lemma 6.3 in [16] shows that E(Kj1{ζ>τj+1}|FN
τj

) ≤ 5(s/µ)1−1/3kN . Markov’s
Inequality thus yields that

P
(
1{ζ>τj+1}

Kj

s/µ
> ϵ|FN

τj

)
≤ 5

ϵ

(
µ

s

)1/3kN

= o

( 1
ϵkN

)
,

where the last estimate can be derived by taking the logarithm and using Assumption (A2).
Let pSj denote the conditional distribution of Sj given FN

τj
, supported on {0, 1/⌈s/µ⌉, . . . , 1}.

Note that if an early mutation occurs as described in Lemma 3.9, on the event {τj+1 < ζ} and
given FN

τj
, the individual who generates the large family, conditionally given that it is a good

type j individual, is chosen uniformly at random among the ⌈s/µ⌉ individuals of type j − 1 at
time τj . Hence, the probability that the early individual is in group Y , respectively X, (given
that there was an early type j mutation) is YN

j−1, respectively 1 − YN
j−1, up to a term of order

o(1/ϵkN ), as discussed above. Thanks to Lemma 3.9, we can write

E
(
1{ζ>τj+1,Sj>ϵ}

(
f
(
Y̌N

j

)
− f(YN

j−1)
) ∣∣∣FN

τj

)
=
∫

(ϵ ,1]
pSj (dx)

(
YN

j−1f
(
YN

j−1(1 − x) + x
)

+ (1 − YN
j−1)f

(
YN

j−1(1 − x)
)

− f
(
YN

j−1

) )
+ E + o

( 1
ϵkN

)
,

where E is the error coming from the approximation in Lemma 3.9, and the probability that
this approximation does not hold. In particular, we have that

|E| ≤ pSj ((ϵ , 1])
(

sup
−8δ<z<8δ

∣∣∣f (YN
j−1(1 − x) + x + z

)
− f

(
YN

j−1(1 − x) + x
)∣∣∣

+ sup
−8δ<z<8δ

∣∣∣f (YN
j−1(1 − x) + z

)
− f

(
YN

j−1(1 − x)
)∣∣∣ )+ Cϵ

kN
∥f∥∞

≤ 1 + 13δ

ϵqj
16δ∥f ′∥∞ + Cϵ

kN
∥f∥∞ ≤ C

ϵ

qj
(∥f∥∞ + ∥f ′∥∞),

where we used Lemma 7.8 in [16], Proposition 3.1(4), and that ϵ3 > δ by (3.1). Lemma 3.3
allows us to write∣∣∣∣E (1{ζ>τj+1,Sj>ϵ}

(
f
(
Y̌N

k

)
− f(YN

j−1)
) ∣∣∣FN

τj

)
− 1

qj

∫ 1

ϵ

dx

x2

∫ 1

0
du

(
f

(
YN

j−1(1 − x) + x1{u≤YN
j−1}

)
− f

(
YN

j−1

))∣∣∣∣
≤ C

ϵ

qj

(
∥f ′∥∞ + ∥f∥∞

)
.

We leave to the reader the proof of the following bound:∣∣∣∣∫ ϵ

0

dx

x2

∫ 1

0
du

(
f

(
YN

j−1(1 − x) + x1{u≤YN
j−1}

)
− f

(
YN

j−1

))∣∣∣∣ ≤ ϵ∥f ′′∥∞

Recall (4.4), we thus have shown that∣∣∣∣qjE
(
f(YN

j ) − f(YN
j−1)

∣∣∣FN
τj

)
+ αYN

j−1(1 − YN
j−1)f ′(YN

j−1)

−
∫ 1

0

dx

x2

∫ 1

0
du

(
f

(
YN

j−1(1 − x) + x1{u≤YN
j−1}

)
−f
(
YN

j−1

))∣∣∣∣
≤ Cϵ(1 + α +

√
α)(∥f∥∞ + ∥f ′∥∞ + ∥f ′′∥∞).
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On the event {ζ > τj+1}, thanks to Lemma 3.2, we can replace qj by 1/∆j , modifying slightly the
constant C, which nonetheless would not depend on ϵ, δ, T and α. This concludes the proof. □

Lemma 4.3. Any weak limit (Yt)t∈[2 ,T −1] of (YN
t )t∈[2 ,T −1] solves the following martingale prob-

lem

Mt = f(Yt) − f(y) −
∫ t

2
−αYv(1 − Yv)f ′(Yv)dv

−
∫ t

2
dv

∫
[0 ,1]2

du
dp

p2

(
f
(
Yv + p

(
1{u≤Yv} − Yv

))
− f(Yv) − p(1{u≤Yv} − Yv)f ′(Yv)

)
Proof. Suppose that ϕ : N → N defines a subsequence such that Yϕ(N) → Y in distribution, as
N → ∞. We define a sequence of random processes derived from the usual model with varying
ϵ and δ. More specifically, for all ℓ ≥ 1 let ϵℓ := 1/ℓ2 and δℓ = O(ϵ3

ℓ ) such that (3.1) is satisfied
(e.g. 1/2ℓ6). Denote ζℓ the stopping time associated to the model with parameters T, ϵℓ, δℓ and
define Nℓ large enough such that P(ζℓ > aNℓ

T ) < ϵℓ and Lemma 4.2 holds, and such that
(Nℓ)ℓ≥1 is a subsequence of ϕ. Let (Y(ℓ)

j )j(2)≤j≤j(T −1) be the process stopped at time ζℓ, defined
as previously, but with the varying parameters ϵℓ, δℓ, Nℓ. Since it does not depend on ϵℓ and δℓ,
the corresponding non-stopped continuous-time process is simply YNℓ . Note that(

1{ζℓ>aNℓ
T }Y(ℓ)

j(t)−1

)
t∈[2 ,T −1]

=
(
1{ζℓ>aNℓ

T }YNℓ
t

)
t∈[2 ,T −1]

.

Hence, using that ϵℓ → 0 as ℓ → ∞, it is straightforward that (Y(ℓ)
j(t)−1)t∈[2 ,T −1] → Y in dis-

tribution as ℓ → ∞. Thanks to Skorokhod’s Representation Theorem (see e.g. [5, Theorem 6.7
p. 70]), we can assume without loss of generality that the convergence holds almost surely as
ℓ → ∞.

We define

M
(ℓ)
t := f(Y(ℓ)

j(t)−1) − f(Y(ℓ)
j(2)−1) −

j(t)∧j(ζℓ)−1∑
j=j(2)

E
(
f(Y(ℓ)

j ) − f(Y(ℓ)
j−1)|FNℓ

τj

)
,

Note that ζℓ ≤ aNℓ
T for finitely many ℓ almost surely, as a consequence of the choice of ϵℓ.

Therefore, almost surely, for all t ∈ [2 , T − 1], it holds that

lim
ℓ→∞

M
(ℓ)
t = lim

ℓ→∞

f(Y(ℓ)
j(t)−1) − f(Y(ℓ)

j(2)−1) −
j(t)−1∑
j=j(2)

E
(
f(Y(ℓ)

j ) − f(Y(ℓ)
j−1)|FNℓ

τj

)
= Mt,

thanks to Lemma 4.2.
We now show that (M (ℓ)

t )t∈[2 ,T −1] is a martingale with respect to its natural filtration, which
will readily extend to its almost sure limit (Mt)t∈[2 ,T −1]. Let 2 ≤ t < t + r ≤ T − 1 and write

E
(
M

(ℓ)
t+r − M

(ℓ)
t |(M (ℓ)

u )u≤t

)
=

∞∑
n=j(t)

P
(
j(t + r) ∧ j(ζ) = n|(M (ℓ)

u )u≤t

)

×
n−1∑

j=j(t)
E
(
f(Y(ℓ)

j ) − f(Y(ℓ)
j−1) − E

(
f(Y(ℓ)

j ) − f(Y(ℓ)
j−1)|FNℓ

τj

) ∣∣∣(M (ℓ)
u )u≤t

)
.

All the terms in the last sum are null, since the information given by (M (ℓ)
u )u≤t is contained in

FNℓ
τj

for all j ≥ j(t). We thus deduce that M is a martingale, which entails the claim. □

Lemma 4.4. Any solution of the martingale problem of Lemma 4.3 is a solution of the SDE (1.2).
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Lemma 4.4 follows from Theorem 2.3 in [11], which addresses the question of when a solution
of a martingale problem is also a solution of the associated SDE, for general Markov processes.
For a more specific treatment of this question in our setting, the reader may read Section 3.3
of [1], that sketches an adaptation of an elegant duality argument from [4] (see proof of Lemma 1
therein).

Concluding the proof of Theorem 2.1. We have established the convergence of (YN
t )[2 ,T −1]

towards the solution of (1.2), when the killing probability is set to (2.10), the scaling factor qj+1
being a FN

τj+1-measurable random variable. In order to prove Theorem 2.1, we only need to
extend the result to the process with the probability of killing (2.9), where the factor rj+1 is
deterministic.

By Lemma 6.1 in [16], for all j ∈ I, j ≥ j(2), on the event {ζ > τj+1}, it holds that
|∆j − rj | ≤ 10δT,

where we recall the definition of ∆j in (4.3). Thanks to Lemma 3.2, we can write
|qj − rj | ≤ CδT. (4.5)

Let (YN,∗
j )j(2)≤j≤j(T −1) be constructed from the population with probability of killing given

by (2.9), analogously to (YN
j )j(2)≤j≤j(T −1) from the population with probability of killing (2.10).

We now define two processes that bound from above and below the process (YN,∗
j )j(2)≤j≤j(T −1).

Let η ∈ (0 , α) be arbitrary small. We construct (YN,1
j )j(2)≤j≤j(T −1) from the same population

as (YN,∗
j )j(2)≤j≤j(T −1) as follows: for every killing happening, say, at the instant t of a type

j-mutation, we cancel it with probability

1 − (α − η)rj

αqj
.

Note that for N large enough, the above is indeed positive thanks to (4.5) and Proposition 3.1(4),
and that this process has the same law as that of (YN

j )j(2)≤j≤j(T −1), with weak selection coeffi-
cient α − η instead of α. Similarly, we construct (YN,2

j )j(2)≤j≤j(T −1) by adding a killing at every
time t of a type j-mutation such that no killing occurred at time t, with probability(

α + η

qj
− α

rj

)
Xj(t)

Xj(t) + Yj(t) ,

and this process has the same law as that of (YN
j )j(2)≤j≤j(T −1) with weak selection coefficient

α + η instead of α (again, the above is positive by (4.5)). Furthermore, by construction, for all
j ∈ I, j(2) ≤ j ≤ j(T − 1), it holds that

YN,1
j ≤ YN

j ≤ YN,2
j .

We know that (YN,1
j )j(2)≤j≤j(T −1), respectively (YN,2

j )j(2)≤j≤j(T −1), converges to the solution
of (1.2) with α−η instead of α, respectively α+η instead of α. Since this is true for all η ∈ (0 , α)
we deduce that the process (YN

j )j(2)≤j≤j(T −1) defined with the killing probability (2.9) converges
to the solution of (1.2), thus proving Theorem 2.1.
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