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Abstract

The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient
pulses can be modeled by the Bloch-Torrey partial differential equation (PDE). The associated diffusion
MRI signal is the spatial integral of the solution of the Bloch-Torrey PDE. In addition to the signal, the
time-dependent apparent diffusion coefficient (ADC) can be obtained from the solution of another partial
differential equation, called the HADC model, which was obtained using homogenization techniques.

In this paper, we analyze the Bloch-Torrey PDE and the HADC model in the context of geometrical
deformations starting from a canonical configuration. To be more concrete, we focused on two analytically
defined deformations: bending and twisting. We derived asymptotic models of the diffusion MRI signal and
the ADC where the asymptotic parameter indicates the extent of the geometrical deformation. We compute
numerically the first three terms of the asymptotic models and illustrate the effects of the deformations by
comparing the diffusion MRI signal and the ADC from the canonical configuration with those of the deformed
configuration.

The purpose of this work is to relate the diffusion MRI signal more directly with tissue geometrical
parameters.

1. Introduction

Diffusion magnetic resonance imaging (diffusion MRI) is an imaging modality that can be used
to probe the tissue micro-structure by encoding the incoherent motion of water molecules with
magnetic field gradient pulses. The motion during the diffusion-encoding time causes a signal
attenuation from which the apparent diffusion coefficient (ADC), and possibly higher order
diffusion terms, can be calculated [4, 11, 22]. For unrestricted diffusion, the root of the mean
squared displacement of molecules is given by x̄ =

√
2 dim σt, where dim is the spatial dimen-

sion, σ is the intrinsic diffusion coefficient, and t is the diffusion time. In biological tissue, the
diffusion is usually hindered or restricted (for example, by cell membranes). This deviation from
unrestricted diffusion can be used to infer information about the tissue micro-structure.

Using diffusion MRI to get tissue micro-structure information in the mammalian brain has
been the focus of much experimental and modeling work in recent years [1, 3, 6, 16, 17, 18, 23, 24].
The predominant approach up to now has been adding the diffusion MRI signal from simple
geometrical components and extracting model parameters of interest. Numerous biophysical
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models subdivide the tissue into compartments described by spheres, ellipsoids, cylinders, and
the extra-cellular space (ECS) [1, 3, 6, 10, 12, 18, 19, 23]. Some model parameters of interest
include axon diameter and orientation, neurite density, dendrite structure, the volume fraction
and size distribution of cylinder and sphere components and the effective diffusion coefficient or
tensor of the ECS.

There is a gold-standard reference model of the diffusion MRI signal, it is the Bloch-Torrey
partial differential equation (PDE) that describes the time evolution of the complex transverse
water proton magnetization subject to diffusion-encoding magnetic field gradient pulses. The
spatial integral of the solution of the Bloch-Torrey PDE provides a reference model for the dif-
fusion MRI signal arising from the geometry of interest. Because of the high computational cost
of solving the Bloch-Torrey PDE in complicated cell geometries, this gold standard model has
been used primarily as a “forward model” or “simulation framework”, in which one changes the
inputs parameters such as cell geometry, intrinsic diffusion coefficient, membrane permeability,
and study the resulting changes to the MRI signal. This is in contrast to “inverse models”,
which are used to estimate the model parameters of interest from the MRI signal, the idea being
that the “inverse models” have been formulated in such a way so that the model parameters
can be correlated to biological information in the imaging voxel. “Inverse models” include the
biophysical models cited above.

In [13], we presented SpinDoctor, a MATLAB-based diffusion MRI simulation toolbox that
solves the Bloch-Torrey PDE using the Finite Element Method (FEM) and an adaptive time
stepping method. In addition to the diffusion MRI signal, the time-dependent apparent diffu-
sion coefficient (ADC) can be obtained from the solution of another partial differential equation,
called the HADC model, which was obtained using homogenization techniques. SpinDoctor also
provides the numerical solution of the HADC model. SpinDoctor provides a user-friendly inter-
face to easily define cell configurations relevant to the brain white matter. In [9], we presented
an add-on module of SpinDoctor called the Neuron Module that enables diffusion MRI simu-
lations for a group of pyramidal neurons and a group of spindle neurons whose morphological
descriptions were found in the neuron repository NeuroMorpho.Org[2].

In this paper, we continue the Bloch-Torrey PDE based simulation work to further reveal
the relationship between the cellular structure and the diffusion MRI signal in the brain white
matter. We analyze the Bloch-Torrey PDE and the HADC model in the context of parameterized
deformation mappings, starting from a canonical configuration. The canonical configuration we
have in mind is a set of straight parallel axons contained in the extra-cellular space. Our idea is
to model realistic axons as spatial deformations of canonical configurations of parallel axons.

To be more concrete, we focus on two analytically defined deformations: bending and twisting.
We will derive asymptotic models of the diffusion MRI signal and the ADC where the asymptotic
parameter indicates the extent of the geometrical deformation. The purpose of this work is to
relate the diffusion MRI signal more directly with tissue geometrical parameters.

2. Theory

We suppose that one would like to simulate a geometrical configuration of axons enclosed in the
extra-cellular space (ECS). Let Ωe be the ECS, Ωin

i the ith axon. In this paper, we focus on
deformations and do not consider the effects of water exchange between the axons and the ECS.
Thus, we analyze each compartment individually. In the case where we talk about a general
geometrical compartment, we will use the notation Ω.

2.1. Bloch-Torrey PDE

In diffusion MRI, a time-varying magnetic field gradient is applied to the tissue to encode water
diffusion. For simplicity, we will assume the interfaces between the axons and the ECS are
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impermeable, meaning the water exchange between compartments is negligible. Denoting the
effective time profile of the diffusion-encoding magnetic field gradient by f(t), and let the vector
g contain the amplitude and direction information of the magnetic field gradient, the complex
transverse water proton magnetization in a compartment Ω (either an axon or the ECS) in the
rotating frame satisfies the Bloch-Torrey PDE:

∂

∂t
M(x, t) = −Iγf(t)g · x M(x, t) + ∇ · (σ∇M(x, t)), x ∈ Ω, (2.1)

where γ = 2.67513 × 10 rad s−1T −1 is the gyromagnetic ratio of the water proton, I is the
imaginary unit, σ is the intrinsic diffusion coefficient in the compartment Ω. The magnetization
is a function of position x and time t, and depends on the diffusion gradient vector g and the
time profile f(t).

Some commonly used time profiles (diffusion-encoding sequences) are the pulsed-gradient spin
echo (PGSE) sequence [22] and the oscillating gradient spin echo (OGSE) sequence [7, 8]. Here,
we will consider the PGSE sequence, with two rectangular pulses of duration δ, separated by a
time interval ∆ − δ, for which the profile f(t) is

f(t) =


1, t1 ≤ t ≤ t1 + δ,

−1, t1 + ∆ < t ≤ t1 + ∆ + δ,

0, otherwise,
(2.2)

where t1 is the starting time of the first gradient pulse with t1 + ∆ > TE/2, and TE is the echo
time at which the signal is measured.

The Bloch-Torrey PDE needs to be supplemented by interface conditions. In this paper, we
consider the impermeable boundary condition:

σ∇M(x, t) · n = 0, x ∈ Γ, (2.3)

where n is the unit outward pointing normal vector and Γ = ∂Ω is the boundary of the com-
partment Ω (an axon or ECS).

The Bloch-Torrey PDE also needs initial conditions:

M(x, 0) = ρ, x ∈ Ω, (2.4)

where ρ is the initial spin density in the compartment Ω.
The diffusion MRI signal is measured at echo time t = TE > ∆ + δ for PGSE. This signal is

the integral of M(x, TE) in all the compartments:

S :=
∫

x∈
⋃

Ωi

M(x, TE) dx. (2.5)

In a diffusion MRI experiment, the pulse sequence (time profile f(t)) is usually fixed, while g
is varied in amplitude (and possibly also in direction). When g varies only in amplitude (while
staying in the same direction), S is plotted against a quantity called the b-value. The b-value
depends on g and f(t) and is defined as

b(g) = γ2∥g∥2
∫ TE

0
dt

(∫ u

0
f(s)ds

)2
. (2.6)

For PGSE, by replacing (2.2) into (2.6), the b-value is [22]:

b(g, δ, ∆) = γ2∥g∥2δ2 (∆ − δ/3) . (2.7)

The reason for these definitions is that in a homogeneous medium, the signal attenuation is e−σb,
where σ is the intrinsic diffusion coefficient.

An important quantity that can be derived from the diffusion MRI signal is the “Apparent
Diffusion Coefficient” (ADC), which gives an indication of the root mean squared distance
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travelled by water molecules in the gradient direction ug = g/∥g∥, averaged over all starting
positions:

ADC := − ∂

∂b log S(b)
S(0)

∣∣∣∣
b=0

. (2.8)

From experimental data, the ADC is numerically computed by a polynomial fit of log S(b).

2.2. HADC model

In a previous work [21], a PDE model for the time-dependent ADC was obtained starting from
the Bloch-Torrey PDE, using homogenization techniques. In the case of negligible water exchange
between compartments (low permeability), there is no coupling between the compartments, at
least to the quadratic order in g, which is the ADC term. The ADC in compartment Ω is given by

HADC = σ − 1∫ TE
0 F (t)2dt

∫ TE

0
F (t) h(t) dt, (2.9)

where F (t) =
∫ t

0 f(t) dt is the integral of time profile and

h(t) = 1
|Ω|

∫
∂Ω

ω(x, t) (ug · n(x)) dsx (2.10)

is a quantity related to the directional gradient of a function ω that is the solution of the
homogeneous diffusion equation with Neumann boundary condition and zero initial condition:

∂

∂t
ω(x, t) − ∇ · (σ∇ω(x, t)) = 0, x ∈ Ω,

σ∇ω(x, t) · n(x) = σF (t)ug · n(x), x ∈ ∂Ω,

ω(x, 0) = 0, x ∈ Ω,

(2.11)

n being the outward normal and t ∈ [0, TE ]. The above set of equations, (2.9)–(2.11), comprise
the HADC model.

2.3. Canonical configuration and geometrical deformations

To reveal the relationship between the geometrical structure and the diffusion MRI signal, we
propose to describe white matter fibers as a deformation of a canonical configuration of parallel
axons. The two basic types of deformations that we implement in this paper are 1) bending, and
2) twisting. Both types of deformations will be described by a single parameter, called αtwist
and αbend. The geometrical structure of the white matter fibers will be defined by these two
deformation parameters.

Twisting around the z-axis with a twisting parameter αtwist is defined byx
y
z

 →

cos(αtwistz) − sin(αtwistz) 0
sin(αtwistz) cos(αtwistz) 0

0 0 1

 x
y
z

 ; (2.12)

Bending on the x − z plane with a bending parameter αbend is defined byx
y
z

 →

x + αbendz2

y
z

 . (2.13)

We plot in Figure 2.1 a geometrical configuration of 10 cylindrical axons and the ECS before
and after deformation.
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Figure 2.1. First row: canonical configuration, ECS (left) and all 10 cylindrical axons (right).
Second row: ECS, bend deformation with αbend = 0.05 (left), 10 cylindrical axons in x − z plane
with αbend = 0.05 (middle), 10 cylindrical axons with αbend = 0.10 (right). Third row: ECS,
twist deformation with αtwist = 0.05 (left), 10 cylindrical axons in x − z plane with αtwist = 0.05
(middle), 10 cylindrical axons with αtwist = 0.10 (right). The radii of all axons are between 2 µm
and 3 µm and the height is 20 µm.

3. Derivation of asymptotic models on the deformation parameter

The main aim of our paper is to construct appropriate models to describe the relationship
between the deformation parameters αtwist and αbend and the diffusion MRI signal as well as
the ADC. We will expand the solutions of the Bloch-Torrey PDE and the HADC model as
asymptotic series in the deformation parameters αtwist and αbend. This approach is expected to
work well in the regime of small deformations.

3.1. Formulation of the PDEs on the canonical configuration

First, we transform the Bloch-Torrey PDE and the HADC model posed on the deformed ge-
ometry Ω into PDEs that are posed on the canonical geometry C. Let r be the space variable
in the deformed (by bending or twisting) configuration, whose domain is Ω. The coordinate

69



Zheyi Yang, Imen Mekkaoui, et al.

transformation,
T : C → Ω, (3.1)

maps the canonical configuration defined on C to the deformed configuration on Ω:

x → r =
[
T (x)

]
. (3.2)

Let J be the Jacobian of T :
J =

[
∂T
∂x

∂T
∂y

∂T
∂z

]
. (3.3)

We define the composite function for the Bloch-Torrey PDE to be N(x, t) : C → R, where

N = M ◦ T, (3.4)

and for the HADC model to be η(x, t) : C → R, where

η = ω ◦ T. (3.5)

We recall that M(r, t) and ω(r, t) are solutions on the deformed domain Ω, thus, N(x, t) and
η(x, t) are the solutions of the respective transformed PDEs.

It is easy to show that the transformed diffusion tensor is :

β = J−tσJ−1. (3.6)

For the twist deformation (α = αtwist):

J−1 =

 cos(αz) sin(αz) αy
− sin(αz) cos(αz) −αx

0 0 1

 , det(J) = 1, (3.7)

and the transformed diffusion tensor is

β = J−1σJ−t = σ

α2y2 + 1 −α2yx αy
−α2yx α2x2 + 1 −αx

αy −αx 1

 . (3.8)

For the bend deformation (α = αbend):

J−1 =

1 0 −2αz
0 1 0
0 0 1

 , det(J) = 1, (3.9)

and the transformed diffusion tensor is

β = J−1σJ−t = σ

4α2z2 + 1 0 −2αz
0 1 0

−2αz 0 1

 . (3.10)

The transformed Bloch-Torrey PDE in C is then:
∂

∂t
N(x, t) = −Iγf(t) (g · T (x)) N(x, t) + ∇ · (β∇N(x, t)), x ∈ C, (3.11)

β∇N(x, t) · n = 0, x ∈ ∂C, (3.12)
N(x, 0) = ρ, x ∈ C, (3.13)

n being the outward normal to C.
The transformed HADC model is:

∂

∂t
η(x, t) − ∇ · (β∇η(x, t)) = 0, x ∈ C, (3.14)

β∇η(x, t) · n(x) = σJ−1F (t)ug · n(x), x ∈ ∂C, (3.15)
η(x, 0) = 0, x ∈ C, (3.16)
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3.2. Asymptotic expansion of HADC

We now expand the solution of the HADC model in the deformation parameters and match the
terms to get the first three terms of the asymptotic expansion.

We write the solution η to (3.14)–(3.16) as a three term asymptotic expansion:
η(x, t) = η0(x, t) + αkη1(x, t) + α2

kη2(x, t) + O(α2
k), (3.17)

where k ∈ {bend, twist}. Replacing (3.14) by (3.17), we obtain:
∂tη0 + αk∂tη1 + α2

k∂tη2 − ∇ · (β∇η0) − αk∇ · (β∇η1) − α2
k∇ · (β∇η2) = 0. (3.18)

Using (3.10) for the bending transformation, the transformed Laplacian operator is (α =
αbend):

∇ · (βbend∇) = ∇ ·

σ

4α2z2 + 1 0 −2αz
0 1 0

−2αz 0 1

 ∂x

∂y

∂z


= ∇(σ∇) + σ

(
α (−2∂x − 4z∂xz) + α2

(
4z2∂xx

))
.

(3.19)

To simplify the notation, we define two second order differential operators :
Kbend,1 := −2∂x − 4z∂xz, (3.20)

and
Kbend,2 := 4z2∂xx. (3.21)

Similarly, in the case of the twisting transformation, using (3.8), the transformed Laplacian
operator is (α = αtwist):

∇ · (βtwist∇) = ∇ ·

σ

α2y2 + 1 −α2yx αy
−α2yx α2x2 + 1 −αx

αy −αx 1

 ∂x

∂y

∂z


= ∇(σ∇) + σ(2α(y∂xz − x∂yz) + α2(y2∂xx − y∂y − 2yx∂xy − x∂x + x2∂yy)).

(3.22)

Also, we define :
Ktwist,1 := 2y∂xz − 2x∂yz, (3.23)

and
Ktwist,2 := y2∂xx − y∂y − 2yx∂xy − x∂x + x2∂yy. (3.24)

So the transformed Laplacian operator acts as the first and the second correction operators
for the Laplacian:

∇ · (βk∇) = ∇ (σ∇) + σ
(
αkKk,1 + α2

kKk,2
)
, (3.25)

where k ∈ {bend, twist}.
Using (3.9) and (3.10) for the bend deformation and (3.7) and (3.8) for the twist deformation,

the right hand side of the boundary condition of (3.15) becomes:
σJ−1F (t)ug · n = σF (t)ug · n + αkσF (t)Lk · ug · n, (3.26)

where k ∈ {bend, twist},

Lbend :=

0 0 −2z
0 0 0
0 0 0

 , (3.27)

and

Ltwist :=


cos(αtwistz)−1

αtwist
sin(αtwistz)

αtwist
y

− sin(αtwistz)
αtwist

cos(αtwistz)−1
αtwist

−x

0 0 0

 . (3.28)
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We note that in Ltwist, we do not expand the trigonometrical functions and keep αtwist in the
expression. This is because if we simulate a geometry containing long axons, then αz is not a
small quantity, there will be a large error if we expand the trigonometrical functions.

The left hand side of the boundary condition of (3.15) becomes:

βk∇η · n = βk

∂xη0 + αk∂xη1 + α2
k∂xη2

∂yη0 + αk∂yη1 + α2
k∂yη2

∂zη0 + αk∂zη1 + α2
k∂zη2


= σ

(
∇η0 + αk

(
Gk,1η0 + ∇η1

)
+ α2

k

(
Gk,2η0 + Gk,1η1 + ∇η2

))
+ O(α2

k),

(3.29)

where k ∈ {bend, twist}. For the bend deformation:

Gbend,1 :=

−2z∂z

0
−2z∂x

 , Gbend,2 :=

4z2∂x

0
0

 , (3.30)

and for the twist deformation:

Gtwist,1 :=

 y∂z

−x∂z

y∂x − x∂y

 , Gtwist,2 :=

y2∂x − xy∂y

x2∂y − xy∂x

0

 . (3.31)

Finally, we obtain the following equations after matching the terms αj
k, with j = 0, 1, 2 and

k ∈ {bend, twist}.
For α0

k, we get the solution of the HADC on the canonical configuration:

∂

∂t
η0(x, t) − ∇ · (σ∇η0(x, t)) = 0, x ∈ C, (3.32)

σ∇η0(x, t) · n(x) = σF (t)ug · n(x), x ∈ ∂C, (3.33)
η0(x, 0) = 0, x ∈ C. (3.34)

For α1
k, we get a PDE that depends on the solution of the previous equation, η0:

∂

∂t
η1(x, t) − ∇ · (σ∇η1(x, t)) = σKk,1η0(x, t), x ∈ C, (3.35)

σ∇η1(x, t) · n(x) = σF (t)Lkug · n(x) − σGk,1η0 · n(x), x ∈ ∂C, (3.36)
η1(x, 0) = 0, x ∈ C. (3.37)

For α2
k, we get a PDE that depends on the solutions of both of the above PDEs:

∂

∂t
η2(x, t) − ∇ · (σ∇η2(x, t)) = σ(Kk,1η1(x, t) + Kk,2η0(x, t)), x ∈ C, (3.38)

σ∇η2(x, t) · n(x) = −σ(Gk,1η1 + Gk,2η0) · n(x), x ∈ ∂C, (3.39)
η2(x, 0) = 0, x ∈ C. (3.40)

3.3. Asymptotic expansion for Bloch-Torrey PDE in the deformation parameters

Similar to the asymptotic expansion of HADC model, we write the solution N(x, t) of (3.11)–
(3.13) as a three term expansion:

N(x, t) = N0(x, t) + αkN1(x, t) + α2
kN2(x, t) + O(α2

k), k ∈ {bend, twist}. (3.41)

By using (3.7) and (3.8), we get :

∂t(N0+αkN1+α2
kN2) = ∇·(β∇(N0+αkN1+α2

kN2))−Iγf(t)(g·T (x))(N0+αkN1+α2
kN2). (3.42)
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The transformed Laplacian operator ∇ · β∇ here is identical to the case of HADC asymptotic
expansion. The Iγf(t)g · T (x) operator becomes:

Iγf(t)g · T (x) = Iγf(t)g · (x + αkPk) , (3.43)
where k ∈ {bend, twist},

Pbend =

z2

0
0

 , (3.44)

and

Ptwist =


cos(αtwistz)−1

αtwist
x − sin(αtwistz)

αtwist
y

sin(αtwistz)
αtwist

x + cos(αtwistz)−1
αtwist

y

0

 . (3.45)

For the same reason as indicated in previously, we do not expand trigonometrical functions in
αtwist in the case of the twist deformation.

The left side of boundary condition of (3.11) is also identical to the (3.29).
For simplicity of notation, we define the Bloch-Torrey operator BT := −∇σ∇ + Iγf(t)g · x.

We obtain the following equations after matching for αj
k, with j = 0, 1, 2, and k ∈ {bend, twist}:

For α0
k, this is the solution of the Bloch-Torrey PDE on the canonical geometry C:

∂

∂t
N0(x, t) + BTN0(x, t) = 0, x ∈ Ci, (3.46)

σ∇N0(x, t) · n = 0, x ∈ ∂C, (3.47)
N0(x, 0) = ρ, x ∈ C. (3.48)

For α1
k, the solution depends on the solution of the above PDE, N0:

∂

∂t
N1(x, t) + BTN1(x, t) = −Iγf(t)g · PkN0(x, t) + Kk,1N0(x, t), x ∈ C, (3.49)

σ∇N1(x, t) · n = −σGk,1N0(x, t) · n, x ∈ ∂C, (3.50)
N1(x, 0) = 0, x ∈ C. (3.51)

For α2
k, the solution depends on the solutions of both of the above PDEs:

∂

∂t
N2(x, t)+BTN2(x, t) = −Iγf(t)gPkN1(x, t)+Kk,1N1(x, t)+Kk,2N0(x, t), x ∈ C, (3.52)

σ∇N2(x, t) · n = −σ(Gk,1N1(x, t) − Gk,2N0(x, t)) · n, x ∈ ∂C, (3.53)
N2(x, 0) = 0, x ∈ C. (3.54)

3.4. Numerical implementation

The numerical computations of the asymptotic expansions are done using the diffusion MRI
simulation toolbox SpinDoctor [13]. We use SpinDoctor to create the geometries, generate finite
element (FE) meshes and compute the orders 0, 1, and 2 asymptotic expansions: η0, η1, η2 and
N0, N1, N2.

Firstly, we use SpinDoctor to create a canonical geometry, containing several straight cylin-
drical axons parallel to the z-axis and an extracellular space wrapped around the axons. Then a
finite element mesh is generated for the canonical geometry. The deformed geometries will have
finite element meshes that are the analytical deformations of the canonical finite element mesh,
described in (2.12) and (2.13).

Since we assumed that the water exchange is negligible, there is no coupling between any
compartments for both the Bloch-Torrey PDE and the HADC, and the PDEs are solved inde-
pendently in each compartment. The finite element discretization is based on continuous piece-
wise linear basis functions (the P1 finite elements), with a numerically efficient implementation
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from [20]. The time stepping is done automatically using the MATLAB built-in ODE solver
ode15s.

Further details about the finite elements matrices construction are contained in the Appendix.

4. Numerical results

The numerical validation of the asymptotic expansions of the Bloch-Torrey PDE and the HADC
model will be conducted in this section. The geometry we use is composed of 10 cylindrical axons
and a tightly wrapped ECS, as depicted in Figure 2.1. The radii of the axons are between 2 µm
and 3 µm, the exterior width of the ECS is around 40% of the average axon radius, and the
height of all the compartments is 20 µm. The diffusion coefficients are set to σaxon = σecs =
2 × 10−3 mm2/s and the permeability coefficient set to κ = 0 m/s. The gradient sequence is
PGSE (δ = 5 ms, and ∆ = 10 ms).

The reference values are either the ADC obtained by solving the HADC model (Eq. (2.11))
on the deformed geometry Ω or the diffusion MRI signal obtained by solving the Bloch-Torrey
PDE (Eq. (2.1)) on Ω. Both of these reference values are obtained using SpinDoctor. The error
of the asymptotic model is the difference between the reference values and either η0 + η1 + η2 or
N0 + N1 + N2.

4.1. HADC model

First we show the effects of bending and twisting in multiple gradient directions for the HADC
model. Being that η0 gives the ADC of the canonical configuration, η1 and η2 could be considered
as two corrections. In all the plots that follow, the ADC is normalized by the intrinsic diffusion
coefficient σ.

Figure 4.1. The components of the HADC asymptotic model in 180 gradient-directions, which
are uniformly distributed on the sphere. The black dots indicate the ADC values. The distances
from the origin of the dots as well as the colors are proportional to the ADC (normalized
by the intrinsic diffusion coefficient σ = 2 × 10−3 mm2/s). The gradient sequence is PGSE
(δ = 5 ms, and ∆ = 10 ms). Top: the bend deformation with αbend = 0.05. Bottom: the twist
deformation with αtwist = 0.05. η0 (left), η1 (middle), η2 (right).
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In Figure 4.1 we show η0, η1 and η2 in multiple gradient directions in 3 dimensions. We can
see that η1 provides maximal correction along the z direction. On the other hand, η2 provides
maximal correction along the x − z plane for the bend deformation, and along the x − y plane
for the twist deformation.

For the clarity of display, we show further results, which concern the accuracy of our asymp-
totic model, using two dimensional plots, where a uniform distribution of gradient directions is
taken from the x − z plane (y = 0). The reference value is the ADC obtained by solving the
HADC model on the deformed geometry Ω. The error of the asymptotic model is the difference
between η0 + η1 + η2 and the reference value.

Figure 4.2. 2D HARDI simulations of the ADC in 60 gradient-directions, which are uniformly
distributed in the x − z plane (y = 0). The ADC values are normalized by the intrinsic diffusion
coefficient σ = 2 × 10−3 mm2/s and labelled on the gray circles. The displayed angle (from 0 to
360 degrees) is the angle between positive x-axis and the diffusion gradient direction. The blue,
red, yellow lines represent η0, η0 + η1, η0 + η1 + η2, respectively. The reference value is shown in
purple. The gradient sequence is PGSE (δ = 5 ms, and ∆ = 10 ms). Top left: αbend = 0.05 (where
the asymptotic model and the reference value are indistinguishable); Top right: αtwist = 0.05;
Bottom left: αbend = 0.10; Bottom right: αtwist = 0.10.

In Figure 4.2, we show four curves: the reference value, the asymptotic model (η0 + η1 + η2,
the second order approximation), η0 (the ADC from the canonical geometry, the zeroth order
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approximation), and η0 + η1 (the first order approximation). We see that frequently, the first
order correction is an overcorrection on η0 and that our second order correction brings the result
closer to the reference value. As the deformation parameter increases, the difference between
our asymptotic model and the reference value increases, as expected. We note that even though
η0 is the same function on the canonical geometry for both the bend and twist deformations,
when transformed to the deformed geometry, its contribution to the ADC is different depending
on the specific deformation. This means the computed zeroth order ADC is different for each
deformation despite the fact that η0 is the same function on the canonical geometry C.

Figure 4.3. The relative ADC error between 0th, 1st and 2nd order approximations and the
reference value in 60 gradient directions, which are uniformly distributed in the x − z plane
(y = 0). The labelled values on the gray circles are given in percent. The displayed angle (from
0 to 360 degrees) is the angle between positive x-axis and the diffusion gradient direction. The
blue, red, yellow lines represent η0, η0 + η1 and η0 + η1 + η2, respectively. Top left: αbend = 0.05;
Top right: αtwist = 0.05; Bottom left: αbend = 0.10; Bottom right: αtwist = 0.10.

In Figure 4.3, we show the relative errors of the 0th, 1st and 2nd order approximations, nor-
malized by the reference values. At αbend = 0.05, the maximum 2nd order approximation error
is 1 percent, and the maximum 0th order approximation error is 14 percent. At αbend = 0.10,
the maximum 2nd order approximation error is 15 percent, and the maximum 0th order approx-
imation error is 45 percent. At αtwist = 0.05, the maximum 2nd order approximation error is 2
percent, and the maximum 0th order approximation error is 10 percent. At αtwist = 0.10, the
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maximum 2nd order approximation error is 22 percent, and the maximum 0th order approxima-
tion error is 45 percent.

Next, we show in Figure 4.4 the relative errors for the axons compartment and for the ECS
separately. In general, the axons compartment is much less accurately modelled than the ECS
compartment (which is more isotropic). At αbend = 0.05, the maximum axons error over the
gradient directions is 8 percent, the maximum ECS error is 1 percent. At αbend = 0.10, the
maximum axons error is 40 percent, the maximum ECS error is 8 percent. At αtwist = 0.05, the
maximum axons error is 16 percent, the maximum ECS error is 1 percent, and at αtwist = 0.10,
the maximum axons error is 65 percent, the maximum ECS error is 10 percent.

Figure 4.4. The relative ADC errors between the reference solution and the asymptotic model
in 60 gradient directions in the x−z plane (y = 0), in all compartments (blue line), in the axons
(red line), and in the ECS (yellow line). The labelled values on the gray circles are given in
percent. The displayed angle (from 0 to 360 degrees) is the angle between positive x-axis and the
diffusion gradient direction. The angles in bold styles indicate the encoding gradient directions
where ADC errors reach minimum. The gradient sequence is PGSE (δ = 5 ms, and ∆ = 10 ms).
The ratio of volume of axons and ECS is around 1:1.5. Top left: αbend = 0.05; Top right:
αtwist = 0.05. Bottom left: αbend = 0.10; Bottom right: αtwist = 0.10.

4.2. Bloch-Torrey PDE

Now we validate our asymptotic model for the Bloch-Torrey PDE in the same geometries. In
Figure 4.5 we show the real part of the normalized signal at b = 3000 s/mm2 in the canonical
geometry, as well as in the bend and twist deformed geometries.
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Figure 4.5. The real part of the normalized diffusion MRI signal at b-value = 3000 s/mm2,
in 180 gradient-directions, which are uniformly distributed on the sphere. The distances from
the origin of the black dots as well as the colors are normalized by S0. The gradient sequence
is PGSE (δ = 5 ms, and ∆ = 10 ms). The diffusion MRI signals of the canonical configuration
(left). The signals of the bend deformation by asymptotic model, with αbend = 0.05 (middle).
The signals of the twist deformation by asymptotic model, with αtwist = 0.05 (right).

Figure 4.6. The relative signal error between 0th, 1st and 2nd order approximations and ref-
erence value in 60 directions gradient-directions in the x − z plane (y = 0). The labelled values
on the gray circles are given in percent. The displayed angle (from 0 to 360 degrees) is the angle
between positive x-axis and the diffusion gradient direction. The b-value = 1000 s/mm2 and the
gradient sequence is PGSE (δ = 5 ms, and ∆ = 10 ms). The real part of the diffusion MRI
signal is normalized by the initial signal S0. The blue, red, yellow lines represent η0, η0 + η1
and η0 + η1 + η2, respectively. Top left: αbend = 0.05; Top right: αtwist = 0.05; Bottom left:
αbend = 0.10; Bottom right: αtwist = 0.10.

In Figure 4.6, we show the relative errors between the 0th, the 1st, the 2nd order approximations
and the reference value, for b = 1000 s/mm2. For the bend deformation, the 0th and the 1st order
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approximations are indistinguishable in their real parts. For the twist deformation, the 1st order
approximation actually has a higher error than η0.

In Figure 4.7, we show the relative errors of the asymptotic model for the axons compartment
and for the ECS separately, for b = 500 s/mm2 and b = 1000 s/mm2. For both αbend = 0.05 and
αtwist = 0.05, the axons errors are larger than the ECS errors.

Figure 4.7. The relative signal errors between the reference solution and the asymptotic model
in 60 gradient directions in the x−z plane (y = 0), in all compartments (blue line), in the axons
(red line), and in the ECS (yellow line). The labelled values on the gray circles are given in
percent. The displayed angle (from 0 to 360 degrees) is the angle between positive x-axis and the
diffusion gradient direction. The angles in bold styles indicate the encoding gradient directions
where signal errors reach minimum. The gradient sequence is PGSE (δ = 5 ms, and ∆ = 10 ms).
The ratio of volume of axons and ECS is around 1:1.5. Top: αbend = 0.05. Bottom: αtwist = 0.05.
Left: b = 500 s/mm2. Right: b = 1000 s/mm2.

4.3. Convergence order of the asymptotic models

Finally, we show the convergence order of the asymptotic models. In Figure 4.8, we show the
relative errors in the ADC of η0, η0 + η1, and η0 + η1 + η2, as αbend and αtwist decrease. We see
a convergence order of 3, O(α3), for our asymptotic model.

In Figure 4.9, we show the relative errors in the signal of N0, N0 + N1, and N0 + N1 + N2,
as αbend and αtwist decrease, for b = 500 s/mm2. Again, we see a convergence order of 3, O(α3),
for our asymptotic model.
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Figure 4.8. The ADC relative error (in percent) vs. deformation angle. The diffusion gradient
direction is (1, 0, 0). The black, red and blue markers represent zeroth order, first order and
second order approximations, respectively. The lines with the same color are the fitting functions.
Left: ADC error vs. bend angle; Right: ADC error vs. twist angle.

Figure 4.9. The signal relative error (in percent) vs. deformation angle. The diffusion gradient
direction is (1, 0, 0). The black, red and blue markers represent zeroth order, first order and
second order approximations, respectively. The lines with the same color are the fitting functions.
Left: Signal error vs. bend angle; Right: Signal error vs. twist angle.

Figure 4.10. The signal relative error vs. b-values. The diffusion gradient direction is (1, 0, 0).
The black, red and blue markers represent zeroth order, first order and second order approxi-
mations, respectively. The lines with the same color are the fitting functions. Left: Signal error
vs. b-value, with αbend = 0.06; Right: Signal error vs. b-value, with αtwist = 0.06.
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Finally, in Figure 4.10, we show the convergence of our asymptotic models with b-value is
first order, O(b).

5. Discussion

In the previous section we have shown the accuracy levels of the second order asymptotic models
for four geometrical deformations. From Figure 2.1 we can see that at the two smaller deforma-
tion values, αbend = 0.05 and αtwist = 0.05, there are already visually significant deformations
compared to the canonical geometry. It seems that this range of values is sufficient to model
significant deviations from straight cylinders and is therefore biological relevant to describe the
geometry of the brain white matter. At the higher values that we simulated, αbend = 0.10 and
αtwist = 0.10, the asymptotic models resulted in much higher errors, but by visual inspection, this
larger range of values seems beyond the level of geometrical deviations from straight cylinders
that we can expect in the brain white matter.

We have shown that for biologically relevant geometrical deviations, the ADC and the diffusion
MRI signal are accurately described as the sum of a zeroth order value (signal or ADC from
the straight cylinders) and two orders of corrections. We showed that a first order correction
is not sufficient to improve on the zeroth order model, at least two orders of corrections are
needed to significantly improve on the zeroth order model. With the second order corrections,
the asymptotic models are third order accurate in the geometrical deformation parameters. In
addition, the model errors were shown to come mainly from the axons, with the errors from the
ECS compartment a much smaller source of error.

This work uses similar mathematical tools as several previous papers focused on the math-
ematical analysis of the Bloch-Torrey PDE subject to geometrical deformations. In [5], a new
mathematical model of Bloch-Torrey PDE in moving and deforming media was introduced.
In [14], a rigorous mathematical formalism was introduced to quantify the effect of macroscopic-
scale tissue motion and deformation in cardiac diffusion MRI. In [15], a new model of the ADC
of cardiac diffusion MRI was formulated in the presence of microscopic-scale tissue motion and
deformation.

The purpose of this work is to contribute to relating the diffusion MRI signal more directly
with the tissue geometrical parameters, the idea being that the diffusion MRI signal and ADC
differences between nearby voxels and regions of interest can be modeled by second order cor-
rections due to geometrical deformations with respect to a canonical configuration of straight
white matter fibers. Even though the two correction terms we described in this paper are in the
forms of partial differential equations and hence are complicated to solve, an intriguing possible
future direction is the use of machine learning algorithms to directly map diffusion MRI signals
to some geometrical deformation parameters relevant to the white matter fibers in the regions
of interest.

6. Conclusion

We analyzed the Bloch-Torrey PDE and the HADC model in the context of geometrical deforma-
tions starting from a canonical configuration, focusing on two analytically defined deformations,
bending and twisting. We derived asymptotic models of the diffusion MRI signal and the ADC
where the asymptotic parameter indicates the extent of the geometrical deformation. We com-
puted numerically the first three terms of the asymptotic models, the zeroth order model based
on the canonical configuration, and two orders of corrections. We showed that a first order cor-
rection is not sufficient to improve on the zeroth order model, at least two orders of corrections
are needed to significantly improve on the zeroth order model. With the second order corrections,
the asymptotic models are third order accurate in the geometrical deformation parameters. In
addition, the model errors were shown to come mainly from the axons, with the errors from the
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ECS compartment a much smaller source of error. The purpose of this work is to contribute
to relating the diffusion MRI signal more directly with the tissue geometrical parameters, the
idea being that the diffusion MRI signal and ADC differences between nearby voxels and regions
of interest can be modeled by second order corrections due to geometrical deformations with
respect to a canonical configuration of straight white matter fibers.

Appendix

In this Section, we give details about the construction of the finite elements matrices needed to
implement the second order corrections.

For the asymptotic expansion of HADC model, the FE matrices are generated for each com-
partment with P1 basis function, which are denoted as φi, for i = 1, . . . , Nv, where Nv is the
number of mesh nodes. The approximate solution of each order of expansion is

∑Nv ξj
i φi, where

ξj
i is the weight of corresponding P1 basis function and j is the order.

The zeroth order term is identical to regular HADC model. The mass, stiffness and flux
matrices M, S and Q are defined as follows:

Mij =
∫

Ω
φiφj dx, Sij =

∫
Ω

σ∇φi · ∇φj dx, Qij = σ

∫
∂Ω

ug · n(x)φiφj ds. (6.1)

Applying Green’s Theorem for partial derivatives, the integral of correction terms Kk,1 and
Kk,2 multiplying φk could be written as an volume integral of C and a surface integral of ∂C.
The later items cancel Gk,1 and Gk,2. Therefore, for the bend deformation, the two correction
matrices are:

Cbend,1,ij = 2σ

∫
∂Ω

z(∂zφi∂xφj + ∂xφi∂zφj) dx, Cbend,2,ij = 4σ

∫
∂Ω

z2∂xφi∂xφj dx. (6.2)

For the twist deformation, the two correction matrices are:

Ctwist,1,ij = σ

∫
∂Ω

xi(∂zφi∂yφj + ∂yφi∂zφj) − yi(∂zφi∂xφj + ∂xφi∂zφj) dx,

Ctwist,2,ij = σ

∫
∂Ω

xiyi(∂xφi∂yφj + ∂yφi∂xφj) − x2
i (∂yφi∂yφj) − y2

i (∂xφi∂xφj) dx.
(6.3)

The flux matrix for solving (3.35) on the bend geometry is:

Qbend,ij = −2σ

∫
∂Ω

zugz · nx(x)φiφj ds, (6.4)

where ugz and nz(x) are the projections of ug and n(x) onto z-axis, respectively.
The flux matrix for solving (3.35) on the twist geometry is:

Qtwist,ij = −2σ

∫
∂Ω


cos(αtwistz)−1

αtwist
ugx + sin(αtwistz)

αtwist
ugy + yugz

cos(αtwistz)−1
αtwist

ugy − sin(αtwistz)
αtwist

ugx − xugz

0

 · n(x)φiφj ds, (6.5)

where ugx and ugy are the projections of ug onto x-axis and y-axis, respectively.
For numerical computing the solution η0 of (3.32), the semi-discretized equation is:

M∂ξ0

∂t
= −Sξ0 + Qξ̄, (6.6)

where
∑

ξ0
i φi is the approximation of η0, ξ0

i is the coefficient of base functions and ξ̄ = F (t) · 1.
(3.35) and (3.38) can be discretized into the matrix form below:

M∂ξ1

∂t
= −Sξ1 + Qkξ̄ + Ck,1ξ0, (6.7)

M∂ξ2

∂t
= −Sξ2 + Ck,1ξ1 + Ck,2ξ0, (6.8)
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where k ∈ {bend, twist}. System of semi-discretized equations (6.6), (6.7), (6.8) can be assembled
into one equations as below:M 0 0

0 M 0
0 0 M

 ∂ξa

∂t
= −

 S 0 0
−Ck,1 S 0
−Ck,2 −Ck,1 S

 ξa +

Q 0 0
0 Qk 0
0 0 0


ξ̄

ξ̄
ξ̄

 , (6.9)

where ξa = [ξ0; ξ1; ξ2] and 0 is the all-zeros matrix with the same dimension as M.
(6.9) is solved by MATLAB built-in ODE solver ode15s. This solver will automatically deter-

mine the time stepping. When the computation is finished, we decompose ξa into ξ0, ξ1 and ξ2.
The approximation of ηall equals to the sum of all components above:

ηall =
∑

k

(ξ0 + αkξ1 + α2
kξ2)φk, where k ∈ {bend, twist}. (6.10)

Then, ADC coefficient is computed according to equation 2.9. It is worth mentioning that the
approximation of η is computed on canonical geometry, but the integration in (2.9) should be
performed over deformed coordinates.

The asymptotic expansion of the Bloch-Torrey PDE could be discretized similarly as for
the HADC model, the only difference is the diffusion encoding gradient matrices, which are
described as:

J0 = Iγ

∫
Ω

g · xφiφj dx,

Jbend = Iγ

∫
Ω

gz · z2φiφj dx,

Jtwist = Iγ

∫
Ω

g ·


cos(αtwistz)−1

αtwist
x − sin(αtwistz

αtwist
y

sin(αtwistz)
αtwist

x + cos(αtwistz)−1
αtwist

y

0

 φiφj dx.

(6.11)

(3.46), (3.49) and (3.38) can be discretized into the matrix form below:

M∂ξ0

∂t
= −(S + f(t) · J0)ξ0, (6.12)

M∂ξ1

∂t
= −(S + f(t) · J0)ξ1 + (Ck,1 − f(t)Jk)ξ0, (6.13)

M∂ξ2

∂t
= −(S + f(t) · J0)ξ2 + (Ck,1 − f(t)Jk)ξ1 + Ck,2ξ0, (6.14)

where k ∈ {bend, twist},
∑

ξ0
i φi,

∑
ξ1

i φi and
∑

ξ2
i φi are the approximations of N0, N1 and N2,

respectively. The assmbled semi-discreted equation is:M 0 0
0 M 0
0 0 M

 ∂ξa

∂t
= −

 S 0 0
−Ck,1 S 0
−Ck,2 −Ck,1 S

 ξa − f(t)

J0 0 0
Jk J0 0
0 Jk J0

 ξa, (6.15)

and the coefficient of approximation of Nall is:

ξall = ξ0 + αkξ1 + α2
kξ2, where k ∈ {bend, twist}. (6.16)

The signal S is computed according to equation 2.5 after simulation. The same as above, the
integration in (2.5) is over deformed coordinates.

The FE mesh nodes will be deformed analytically by a coordinate transformation. The defor-
mation process and mesh generation are realized by SpinDoctor routines.

83



Zheyi Yang, Imen Mekkaoui, et al.

References

[1] Daniel C. Alexander, Penny L. Hubbard, Matt G. Hall, Elizabeth A. Moore, Maurice Ptito, Geoff
J. M. Parker, and Tim B. Dyrby. Orientationally invariant indices of axon diameter and density from
diffusion MRI. NeuroImage, 52(4):1374–1389, 2010.

[2] Giorgio A. Ascoli, Duncan E. Donohue, and Maryam Halavi. NeuroMorpho.Org: A Central Resource
for Neuronal Morphologies. J. Neurosci., 27(35):9247–9251, 2007.

[3] Yaniv Assaf, Tamar Blumenfeld-Katzir, Yossi Yovel, and Peter J. Basser. Axcaliber: A method for
measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med., 59(6):1347–1354,
2008.

[4] D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet. MR imag-
ing of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.
Radiology, 161(2):401–407, 1986.

[5] Elie Bretin, Imen Mekkaoui, and Jérôme Pousin. Assessment of the effect of tissue motion in diffusion
MRI: Derivation of new apparent diffusion coefficient formula. Inverse Probl. Imaging, 12(1):125–152,
2018.

[6] Lauren M. Burcaw, Els Fieremans, and Dmitry S. Novikov. Mesoscopic structure of neuronal tracts
from time-dependent diffusion. NeuroImage, 114:18–37, 2015.

[7] Paul T. Callaghan and Janez Stepianik. Frequency-Domain Analysis of Spin Motion Using
Modulated-Gradient NMR. J Magn. Reson., A, 117(1):118–122, 1995.

[8] Mark D. Does, Edward C. Parsons, and John C. Gore. Oscillating gradient measurements of water
diffusion in normal and globally ischemic rat brain. Magn. Reson. Med., 49(2):206–215, 2003.

[9] Chengran Fang, Van-Dang Nguyen, Demian Wassermann, and Jing-Rebecca Li. Diffusion MRI sim-
ulation of realistic neurons with SpinDoctor and the Neuron Module. NeuroImage, 222:117198, 2020.

[10] Els Fieremans, Jens H. Jensen, and Joseph A. Helpern. White matter characterization with diffu-
sional kurtosis imaging. NeuroImage, 58(1):177–188, 2011.

[11] Erwin L. Hahn. Spin Echoes. Phys. Rev., 80:580–594, 1950.

[12] Sune N. Jespersen, Christopher D. Kroenke, Leif Astergaard, Joseph J. H. Ackerman, and Dmitriy A.
Yablonskiy. Modeling dendrite density from magnetic resonance diffusion measurements. NeuroIm-
age, 34(4):1473–1486, 2007.

[13] Jing-Rebecca Li, Van-Dang Nguyen, Try Nguyen Tran, Jan Valdman, Cong-Bang Trang, Khieu Van
Nguyen, Duc Thach Son Vu, Hoang An Tran, Hoang Trong An Tran, and Thi Minh Phuong Nguyen.
SpinDoctor: A MATLAB toolbox for diffusion MRI simulation. NeuroImage, 202:116120, 2019.

[14] Imen Mekkaoui, Kevin Moulin, Pierre Croisille, Jérôme Pousin, and Magalie Viallon. Quantifying
the effect of tissue deformation on diffusion-weighted MRI: a mathematical model and an efficient
simulation framework applied to cardiac diffusion imaging. Phys. Med. Biol., 61(15):5662–5686, 2016.

[15] Imen Mekkaoui, Jérôme Pousin, Jan Hesthaven, and Jing-Rebecca Li. Apparent diffusion coefficient
measured by diffusion MRI of moving and deforming domains. J. Magn. Reson., 318:106809, 2020.

[16] Lipeng Ning, Evren Özarslan, Carl-Fredrik Westin, and Yogesh Rathi. Precise Inference and Char-
acterization of Structural Organization (PICASO) of tissue from molecular diffusion. NeuroImage,
146:452–473, 2017.

[17] Marco Palombo, Clémence Ligneul, Chloé Najac, Juliette Le Douce, Julien Flament, Carole Escartin,
Philippe Hantraye, Emmanuel Brouillet, Gilles Bonvento, and Julien Valette. New paradigm to assess
brain cell morphology by diffusion-weighted MR spectroscopy in vivo. Proc. Natl. Acad. Sci. USA,
113(24):6671–6676, 2016.

[18] Marco Palombo, Clémence Ligneul, and Julien Valette. Modeling diffusion of intracellular metabolites
in the mouse brain up to very high diffusion-weighting: Diffusion in long fibers (almost) accounts for
non-monoexponential attenuation. Magn. Reson. Med., 77(1):343–350, 2017.

84



Asymptotic models of diffusion MRI for geometrical deformations

[19] Eleftheria Panagiotaki, Torben Schneider, Bernard Siow, Matt G. Hall, Mark F. Lythgoe, and
Daniel C. Alexander. Compartment models of the diffusion MR signal in brain white matter: A
taxonomy and comparison. NeuroImage, 59(3):2241–2254, 2012.

[20] Talal Rahman and Jan Valdman. Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal
elements. Appl. Math. Comput., 219(13):7151–7158, 2013. ESCO 2010 Conference in Pilsen, June
21- 25, 2010.

[21] Simona Schiavi, Houssem Haddar, and Jing-Rebecca Li. A macroscopic model for the diffusion MRI
signal accounting for time-dependent diffusivity. SIAM J. Appl. Math., 76(3):930–949, 2016.

[22] E. O. Stejskal and J. E. Tanner. Spin Diffusion Measurements: Spin Echoes in the Presence of a
Time-Dependent Field Gradient. J. Chem. Phys., 42(1):288–292, 1965.

[23] Hui Zhang, Penny L. Hubbard, Geoff J. M. Parker, and Daniel C. Alexander. Axon diameter mapping
in the presence of orientation dispersion with diffusion MRI. NeuroImage, 56(3):1301–1315, 2011.

[24] Hui Zhang, Torben Schneider, Claudia A. Wheeler-Kingshott, and Daniel C. Alexander. Noddi:
Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage,
61(4):1000–1016, 2012.

85


	1. Introduction
	2. Theory
	2.1. Bloch-Torrey PDE
	2.2. HADC model
	2.3. Canonical configuration and geometrical deformations

	3. Derivation of asymptotic models on the deformation parameter
	3.1. Formulation of the PDEs on the canonical configuration
	3.2. Asymptotic expansion of HADC
	3.3. Asymptotic expansion for Bloch-Torrey PDE in the deformation parameters
	3.4. Numerical implementation

	4. Numerical results
	4.1. HADC model
	4.2. Bloch-Torrey PDE
	4.3. Convergence order of the asymptotic models

	5. Discussion
	6. Conclusion
	Appendix
	References

