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Abstract

We study a purely inhibitory neural network model where neurons are represented by their state of
inhibition. The study we present here is partially based on the work of Cottrell [6] and Fricker et al. [8]. The
spiking rate of a neuron depends only on its state of inhibition. When a neuron spikes, its state is replaced by
a random new state, independently of anything else, and the inhibition states of the other neurons increase
by a positive value. Using the Perron–Frobenius theorem, we show the existence of a Lyapunov function for
the process. Furthermore, we prove a local Doeblin condition which implies the existence of an invariant
probability measure for the process. Finally, we extend our model to the case where the neurons are indexed
by Z. We construct a perfect simulation algorithm to show the recurrence of the process under certain
conditions. To do this, we rely on the classical contour technique used in the study of contact processes, and
assuming that the spiking rate takes values in the interval [β∗, β∗], we show that there is a critical threshold
for the ratio δ = β∗

β∗−β∗
over which the process is ergodic.

1. Introduction

For the operation of a neural network, neurons excite and/or inhibit each other. Here, we study
a model of a purely inhibitory neural network where neurons are represented by their inhibitory
state. The study we present is partially based on the work of Cottrell [6]. Her model consists of
considering N interacting neurons described their state of inhibition. In her work, a neuron spikes
when its state touches the value 0. When a neuron spikes, the state of inhibition of the other
neurons increase by a non-negative deterministic constant θ. The spiking neuron immediately
receives a random inhibition independently of anything else. In Cottrell’s work the state of
inhibition is just the waiting time until the next spike.

In the present work we generalize Cottrell’s model in several natural ways. Actually, in Cot-
trell’s model, the next spiking time in the neural net is deterministic and we will lift this as-
sumption. A random spiking time is more realistic than a deterministic one since stochasticity is
present all over in the brain functioning. Secondly, to allow formal general models we allow the
state of inhibition to decrease at a general rate in between the successive spikes of the network
while in Cottrell’s work the drift of the flow is equal to −1.

In the first part of this paper, we consider systems of N interacting neurons, in which any
neuron can spike at any time. The spiking neuron takes a new random state of inhibition, and the
others increase their inhibitory state by a deterministic quantity that we will call the inhibition
weight, which depends on the distance between the spiking neuron and the “receiving” neuron,
so that a neuron located far away of the spiking neuron is less impacted by the spike. The model
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thus presented obviously extends Cottrell [6] and Fricker et al. [8] in two ways: the spiking time
is no more deterministic but it is random; the dynamic of the process is no more constant.

Firstly, we show the existence of a Lyapunov function that allows us to formulate a sufficient
condition of non-evanescence of the process in the sense of Meyn and Tweedie [14], i.e. a condition
ensuring that the process does not escape at infinity. To do so, we introduce a reproduction
matrix H and we suppose the spectral radius of H is lower than 1. The eigenvector associated
with the spectral radius of H allows us to find a Lyapunov function for the process.

Secondly, we study the recurrence of the process relying on Doeblin conditions which we
establish for the embedded chain sampled at the jump times. We show the existence of an
invariant probability measure for the process. We do this in the case when the distribution of
the new states has an absolutely continuous density and the jump rate is bounded.

In a second part, we consider the case where we have an infinite number of neurons indexed by
Z (see Comets et al. [4], Galves and Löcherbach [10], Galves et al. [11] and Morgan André [1]).
The mean field behavior of such models has been studied by Cormier et al. [5] and Robert
and Touboul [15] who were also interested in the stationary distributions of these processes. In
the work of Ferrari et al. [7], considering an infinite system of interacting point processes with
memory of variable length, the authors investigated the conditions for the existence of a phase
transition using the classical contour technique, based on the classical work of Griffeath [13] on
a contact process. Morgan André in this work [1], proves that the model described in [7] presents
a metastable behavior while relying on the contour technique used in [13]. Following the idea of
Ferrari et al. [7], Galves et al. [9] and Griffeath [13], we construct a perfect simulation algorithm
that allows us to show the recurrence of the process. Assuming that the spiking rate takes values
in the interval [β∗, β

∗], we show that there is a critical threshold for the ratio δ = β∗
β∗−β∗

over
which the process is ergodic.

This paper is organized as follows. In Section 2 we describe the model and study the law of the
first jump time of the process. The Foster–Lyapunov and Doeblin conditions are discussed to find
non-evanescence criteria and to show the existence of a unique invariant probability measure of
the process in Section 3 which is our first main result. Finally, in Section 4, we present a perfect
simulation algorithm and we simulate the law of the state of inhibition of a given neuron in its
invariant regime.

2. The model

2.1. Description of the model

In our paper, let us consider we have N neurons that are related to each other. For all i ∈
{1, . . . , N}, Xi,N

t describes the state of inhibition of neuron i at time t. When the neuron
i ∈ {1, . . . , N} spikes,

• The current state of inhibition of neuron i is replaced by a new value Y i independently
of anything else with distribution F i. Y i is the new position of the jumping particle right
after the jump.

• The state of inhibition of any neuron j ̸= i is increased by a positive value Wi→j at
time t.

In between successive jumps of the system, each neuron i follows the deterministic dynamic

ẋi
t(xi) = −αi

(
xi

t(xi)
)
, xi

0 = xi, (2.1)

where αi is positive on (0,∞) , locally Lipschitz on [0,∞) and αi(0) = 0 such that the process
can not enter the negative values. Let βi be a continuous positive and decreasing rate function
on [0,∞). We have taken βi to be decreasing so that the larger xi

t is, the lower its probability
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of spiking and the smaller xi
t is, the higher its probability of spiking. xi

t(xi) designs the solution
of the equation (2.1) at time t starting from xi at time 0.

We are thus led to consider the piecewise deterministic Markov process (PDMP) XN
t =

(X1,N
t , . . . , XN,N

t ) ∈ RN
+ . For i ∈ {1, . . . , N}, the state of inhibition of neuron i at time t, Xi,N

t

is given by:

Xi,N
t = Xi,N

0 −
∫ t

0
αi

(
Xi,N

s−

)
ds+

∫ t

0

∫ ∞

0

∫ ∞

0
(yi −Xi,N

s− )1{r≤βi(Xi,N
s− )}M

i(ds, dr, dyi)

+
∑
j ̸=i

Wj→i

∫ t

0

∫ ∞

0

∫ ∞

0
1{r≤βj(Xj,N

s− )}M
j(ds, dr, dyj), (2.2)

where M i is a random Poisson measure with intensity dtdrF i(dy) and for all i, the M i are all
independent. This model extends that of Goncalves et al. [12] in the multidimensional case.

Remark 2.1. For all i ∈ {1, . . . , N}, Xi,N
t can be interpreted as the inhibition state of the neuron

i at time t and Wj→i as the inhibition weight of the neuron j on the neuron i. When Wi→j ≤ 0,
we say that the neuron i is excitatory for the neuron j and when Wi→j ≥ 0, we say that the
neuron i is inhibitory for the neuron j. In our paper we are interested in the case where neuron
i is inhibitory for neuron j i.e., Wi→j ≥ 0.

Remark 2.2. The formula (2.2) is well-posed in the sense that there is non explosion of the
process. Since βi(Xi,N

s ) ≤ βi(0) for all i we deduce that
∫ t

0 βi(Xi,N
s )ds < ∞ whence the non

explosion, that is, almost surely, the process has only a finite number of jumps within each finite
time interval.

The infinitesimal generator associated with this model is given by:

GNV (x) = −
N∑

i=1
αi(xi) ∂

∂xi
V (x)

+
N∑

i=1
βi(xi)

∫ ∞

0
F i(dyi)

[
V (x+ eiyi − eixi +

∑
j ̸=i

ejWi→j)− V (x)
]

(2.3)

where V is a smooth function and ei is the i− th unit vector.
In other words, at each jump of the process, a single neuron spikes. If it is neuron i then its

state is replaced by Y i and all other neurons receive the inhibition weight Wi→j ≥ 0 for any
j ̸= i.

2.2. First jump time

Let N i
t be the counting process of successive jumps of neuron i, that is,

N i
t =

∫ t

0

∫
R+

∫
R+

1{r≤βi(Xi,N
s− (xi))}M

i(ds, dr, dyi)

and Si
1 the first spike time of neuron i, so we have

Si
1 = inf{t > 0, N i

t = 1}.

Let S1 be the first jump time of the state process (Xt), that is, S1 = mini S
i
1. Let for all i,

t0(xi) :=
∫ xi

0

dy
αi(y)

the time for the neuron i to hit 0 starting from xi.
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Proposition 2.3. For t < mini t0(xi),

P(S1 > t) =
N∏

i=1
e−[Γi(xi)−Γi(xi

t(xi))], (2.4)

with Γi(xi) :=
∫ xi

γi(y)dy and γi(xi) = βi(xi)/αi(xi).

Proof. For all t > 0,

P(S1 > t) = P
(
min

i
Si

1 > t
)

=
N∏

i=1
e−
∫ t

0 βi(xi
s(xi))ds. (2.5)

Moreover, if t < mini t0(xi) by making a change of variables z = xi
s(xi) and using the fact

that dz = ẋi
s(xi)ds = −αi(z)ds we have

P(S1 > t) =
N∏

i=1
e−
∫ t

0 βi(xi
s(xi))ds =

N∏
i=1

e
−
∫ xi

t(xi)
xi βi(z)(−dz/αi(z))

=
N∏

i=1
e−[Γi(xi)−Γi(xi

t(xi))]. □

Assumption 2.4. Γi(0) = −∞ for all 1 ≤ i ≤ N .

Proposition 2.5.

(1) Suppose Assumption 2.4 holds. Then S1 <∞ almost surely.

(2) Suppose Assumption 2.4 does not hold.
• If there exists i ∈ [[1, N ]], such that t0(xi) < ∞ then S1 < ∞ almost surely if and

only if βi(0) > 0.
• If for all i ∈ [[1, N ]], t0(xi) =∞ then P(S1 =∞) > 0 i.e. with a positive probability

the first jump time is infinite.

Proof.

(1). Let N be fixed and suppose Assumption 2.4 holds.

• If for all i ∈ [[1, N ]], t0(xi) =∞ and letting t tend to ∞ in (2.4) we have

P(S1 =∞) =
N∏

i=1
e−[Γi(xi)−Γi(xi

∞(xi))] =
N∏

i=1
e−[Γi(xi)−Γi(0)],

since xi
∞(xi) = 0 for all i ∈ [[1, N ]]. Then by Assumption 2.4, P(S1 = ∞) = 0 that is

S1 <∞ almost surely.

• If for some i ∈ [[1, N ]], t0(xi) <∞ and letting t ↑ mini t0(xi) in (2.4), we obtain

P(S1 ≥ min
i
t0(xi)) = lim

t↑mini t0(xi)
P(S1 > t) =

N∏
i=1

e−[Γi(xi)−Γi(0)] = 0

by Assumption 2.4, implying that S1 <∞ almost surely.

(2). Suppose Assumption 2.4 does not hold.

• If there exists i ∈ [[1, N ]], such that t0(xi) <∞ i.e. the time for neuron i to hit 0 starting
from xi is finite then it is obvious (by definition of t0(xi)) to see that it is sufficient for
βi(0) > 0 to have S1 <∞ almost surely.
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• If Assumption 2.4 does not hold and for all i ∈ [[1, N ]], t0(xi) = ∞ then by making
t→∞ in (2.4) we have P(S1 =∞) > 0 that is S1 =∞ with a positive probability. □

We finish this section with a simulation of the process starting from some fixed initial con-
figuration (x1

0, . . . , x
N
0 ). For this, we assume that for all i the jump rate βi(xi) is bounded and

lower bounded, that is, βi(xi) ∈ [β∗, β
∗] for all xi > 0, where 0 < β∗ < β∗ <∞.

The following variables will be used to write our simulation algorithm.

• T = (T1, T2, . . . ) where T1 < T2 < . . . are the times of successive proposals of jumps for
the total system, to be accepted or rejected

• L is the label associated with T . It will be {sure} or {possible}

• P = (P 1, . . . , PN ) is the vector of states of the N neurons at a fixed instant

• I is the vector which represents the index of the neuron which spikes.

Algorithm 2.6.

(1) We set T1 ∼ exp(β∗N)

• L1 = {possible} with probability β∗−β∗
β∗

• L1 = {sure} with probability β∗
β∗

(2) We initialize the vector P with the values (x1
0, . . . , x

N
0 )

(3) We choose I1 = k with probability 1
N

• If L1 = {sure},

(a)
{
P k ∼ F k,

P i ← xi
T1

(P i) +Wk→i

• If L1 = {possible} we accept the jump with probability

p =
βk(xk

T1
(P k))− β∗

β∗ − β∗
,

and we apply (a).
• Else P j ← xj

T1
(P j), ∀ j ∈ {1, . . . , N}.

(4) We update the vector P and start the procedure again from (1).

We stop the procedure after a fixed finite number n of iterations.

We plot in the following figure a typical trajectory of Xi,N
t with N = 2 neurons.

In both figures N = 2 neurons, n = 50 iterations and F i ∼ exp(1) for all 1 ≤ i ≤ 2. It can be
seen that in Figure 2.1(a) there are more occurrences of jumps than in Figure 2.1(b). In both,
Neuron i = 1 is plotted in blue and neuron i = 2 in red.

3. Foster–Lyapunov and Doeblin conditions

In this section, we want to find conditions of non-evanescence of the process and show the
existence of an invariant probability measure of the process.
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(a) α(x) = x, β(x) = 3 + 1(x ≤ 2),
W2→1 = 1/2 and W1→2 = 1. In this
case, the process is ergodic.
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(b) α(x) = x/(1 + x), β(x) = 1/(1 + x)
and W1→2 = W2→1 = 1/2. In this case,
the process is transient

Figure 2.1. Simulations of the neuron system with N = 2 neurons

3.1. Foster–Lyapunov condition

In what follows, K is a fixed compact set, and we suppose that γi(x) := βi(x)/αi(x) is such that
∥γi∥∞,Kc := sup

x∈Kc
|γi(x)| <∞.

We define W the matrix of inhibition weight by Wij := Wj→i, i ̸= j and Wii = 0.
It is further assumed that the matrix W is irreducible in the sense that there exists an integer

p > 0 such that W p has only positive coefficients. We introduce the reproduction matrix

Hij = Wj→i∥γi∥∞,Kc , i ̸= j, Hii = ∥γi∥∞,Kc

∫ ∞

0
yiF i(dyi)

which is also irreducible.
Suppose that

ρ(H) < 1
where ρ(H) is the largest eigenvalue of H, that is, the spectral radius of H. By the Perron
Frobenius theorem, there exists a left eigenvector κ associated to this eigenvalue ρ, that is, for
all i, ∑

j

κjHji = ρκi.

On the other hand, put mi = κi∥γi∥∞,Kc .
Finally, let V : RN

+ → R+ such that

V (x) =
N∑

i=1
mix

i (3.1)

and recall that the infinitesimal generator is given by:

GNV (x) = −
N∑

i=1
αi(xi) ∂

∂xi
V (x)

+
N∑

i=1
βi(xi)

∫ ∞

0
F i(dyi)

[
V (x+ eiyi − eixi +

∑
j ̸=i

ejWi→j)− V (x)
]
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So by replacing V by its expression in the infinitesimal generator GNV (x) we have for all x ∈ Kc:

GNV (x) = −
N∑

i=1
αi(xi)mi +

N∑
i=1

βi(xi)
∫ ∞

0
dF i(yi)

[
N∑

j=1,j ̸=i

(Wi→j + xj)mj + yimi −
N∑

j=1
xjmj

]

= −
N∑

i=1
αi(xi)mi +

N∑
i=1

βi(xi)
(
mi

∫ ∞

0
yiF i(dyi) +

∑
j ̸=i

Wi→jmj

)
−

N∑
i=1

βi(xi)ximi.

Then, since −βi(xi)xi ≤ 0,

GNV (x) ≤ −
∑

i

αi(xi)mi +
∑

i

βi(xi)
(
mi

∫ ∞

0
yiF i(dyi) +

∑
j ̸=i

Wi→jmj

)

= −
∑

i

αi(xi)
(
mi − γi(xi)

[
mi

∥γi∥∞,Kc
Hii +

∑
j ̸=i

1
∥γj∥∞,Kc

Hjimj

])

= −
∑

i

αi(xi)
(
mi − γi(xi)

[
κiHii +

∑
j ̸=i

κjHji

])

= −
∑

i

αi(xi)
(
∥γi∥∞,Kc κi − γi(xi)ρκi

)
= −

∑
i

αi(xi)∥γi∥∞,Kc κi

(
1− γi(xi)
∥γi∥∞,Kc

ρ

)
.

This calculus leads us to introduce the following

Assumption 3.1. Let α > 0. For all i, there exists ri, such that ∀ xi ≥ ri, αi(xi) ≥ αxi.

Corollary 3.2. Under Assumption 3.1 we have for all x ∈ Kc such that xi ≥ ri for all i and
such αi(xi) ≥ αxi :

GNV (x) ≤ −α
∑

i

ximi

(
1− γi(xi)
∥γi∥∞,Kc

ρ

)
≤ −cV (x)

where c is a positive constant.

Definition 3.3. We call the process non evanescent if there exists a compact K such that for
all x, Px− almost surely, lim supt 1K(Xt) = 1.

Proposition 3.4. If ρ < 1, then the process is non-evanescent.

Proof. V (x) defined in (3.1) above is a norm-like function because the eigenvector κ is positive.
Indeed, we call V : RN

+ → R a norm-like function if V is a positive, measurable function and
V (x)→∞ when x→∞. The condition (CD1) of Meyn and Tweedie [14] implies the result. □

Example 3.5 (Mean-field interaction). Suppose we have N neurons. We suppose also the function
γi such that ∥γi∥∞,Kc <∞ and F i = F, Wj→i = θ for all i. In this case the reproduction matrix is

Hij = θ∥γi∥∞,Kc , i ̸= j, Hii = E(Y )∥γi∥∞,Kc

for some fixed compact set K. Suppose ρ(H) is the spectral radius of H. Then, ρ(H) =
supx∈Kc γi(x)(E(Y ) + (N − 1)θ) and its associated eigenvector is κ = (1, . . . , 1). The condi-
tion ρ(H) < 1 is therefore equivalent to supx∈Kc γi(x) < 1/(E(Y ) + (N − 1)θ).

Example 3.6 (Torus). Suppose we have N ≥ 3 neurons such that each neuron interacts with
its two nearest neighbors (its left and right neighbors). Neuron 1 interacts with neuron 2 and
neuron N . Neuron N interacts with neuron N − 1 and neuron 1, so we have a torus.

9
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We suppose also γi such that ∥γi∥∞,Kc < ∞ and F i = F, Wj→i = θ for all j ∈ {i+ 1, i− 1}
and Wj→i = 0 if j ̸= {i+ 1, i− 1}. In this case the reproduction matrix is

Hij =


θ∥γi∥∞,Kc if i ̸= j, j ∈ {i+ 1, i− 1}
0 if i ̸= j, j /∈ {i+ 1, i− 1}
E(Y )∥γi∥∞,Kc if i = j.

If ρ(H) is the spectral radius of H then ρ(H) = ∥γi∥∞,Kc(E(Y ) + 2θ) and its associated eigen-
vector is κ = (1, . . . , 1). The condition ρ(H) < 1 is equivalent to ∥γi∥∞,Kc(E(Y ) + 2θ) < 1.

3.2. Doeblin condition

Let S0 < S1 < · · · < Sn < . . . be the instants of successive jumps of the N neurons. It is obvious
that the embedded chain Zn := XSn is a Markov chain. Let In be the index of the neuron which
jumps at time Sn.

Proposition 3.7. Suppose that the assumptions of Proposition 2.5 hold. Then, (Zn, In) is a
Markov chain and its transition Q(x, dy) is given by:

P(Zn ∈ dy, In = j|Zn−1 = x, In−1 = i) =
∫ ∞

0
ds e−

∫ s

0 dl
∑N

i=1 βi(xi
l(x

i))βj(xj
s(xj))

×
∫
F j(du)δ(x1

s(x1)+Wj→1,...,xj−1
s (xj−1)+Wj→j−1,u, xj+1

s (xj+1)+Wj→j+1,...,xN
s (xN )+Wj→N )(dy). (3.2)

Theorem 3.8. Suppose for all 1 ≤ i ≤ N, αi ∈ C1 and there exists a compact set K ⊂ (0,∞)N

such that for all x ∈ K, for all 1 ≤ i ≤ N, βi(xi +
∑i−1

j=1Wj→i) > 0. Moreover we suppose
that F i(dy) is absolutely continuous and ∥βi∥∞ <∞ for all i. Then there exist d ∈ (0, 1) and a
probability measure ν on (RN

+ ,B(RN
+ )), such that

QN (x, dy) ≥ d1K(x)ν(dy) (3.3)
where Q is the transition operator of embedded chain Zn = XSn and QN is its N−th iterate.

To prove the above result we fix any deterministic sequence s1 < · · · < sN . In the sequel we
shall work on the event S1 = s1, . . . , SN = sN , I1 = 1, . . . , IN = N and Y1 = y1, . . . , YN = yN .
This means that the jumps are ordered such that neuron 1 jumps before neuron 2 and etc. Let
y = (y1, . . . , yN ) where yi is the new state of inhibition of neuron i after the spike.

Let tk = sk − sk−1 for all 1 ≤ k ≤ N the inter jump times of the N neurons which implies
that sk = t1 + · · ·+ tk.

Conditionally on this event, let ΨsN be the vector of states of the process at time sN . We can
define ΨsN as a function of the states y1, . . . , yN such that ΨsN : RN → RN is given by:

Ψk
sN

(y) =
{
ψk,N

tN
◦ · · · ◦ ψk,k+1

tk+1
(yk) if 1 ≤ k < N

yN if k = N

where for all l ̸= k,

ψk,l
s (u) = xk

s(u) +Wl→k (3.4)
and xk

s(u) means the solution of the deterministic dynamic ẋk
s = −αi(xk

s), xk
0 = u.

Remark 3.9. In the definition of Ψk
sN

(y), we note that it depends only on yk. Therefore we have
for all i ̸= j,

∂Ψi
sN

∂yj
= 0.

Proposition 3.10. For all 1 ≤ k ≤ N let αk be a globally Lipschitz function. For all y ∈ RN
+ ,

there exists an open neighborhood B of y such that ΨsN : B → ΨsN (B) is a local diffeomorphism.

10
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Proof. Let JΨsN
(y) be the Jacobian matrix of ΨsN (y). Using Remark 3.9 we have :

det(JΨsN
(y)) = det



∂Ψ1
sN

(y)
∂y1 . . .

∂Ψ1
sN

(y)
∂yN

... . . . ...

∂ΨN
sN

(y)
∂y1 . . .

∂ΨN
sN

(y)
∂yN


= det



∂Ψ1
sN

(y)
∂y1 0 . . . 0

0 . . . ...
... . . . 0
0 . . . 0 ∂ΨN

sN
(y)

∂yN


.

We obtain det(JΨsN
(y)) ̸= 0 if and only if

∏N
j=1

∂Ψj
sN

(y)
∂yj ̸= 0 that is ∂Ψj

sN
(y)

∂yj ̸= 0,∀ 1 ≤ j ≤ N . It

is obvious to see that ∂ΨN
sN

(y)
∂yN = 1.

For all 1 ≤ j ≤ N − 1, we have:

∂Ψj
sN

∂yj
(y) =

N−j∏
i=1

exp
(
−
∫ sN−(i−1)

sN−i

α′
j

(
xj

s

(
Ψj

sN−i
(y)
))

ds
)
̸= 0. (3.5)

It means that |det(JΨsN
(y))| ≠ 0 then ΨsN (y) is a local diffeomorphism. Localizing, we may

therefore conclude that for each y there exists B such that ΨsN : B → ΨSN
(B) is a diffeomor-

phism. □

Proof of Theorem 3.8. Let ε > 0 fixed. We will work on the event
E = {S1 ≤ ε, . . . , Sn+1 − Sn ≤ ε,∀ n < N : (I1, . . . , IN ) = (1, . . . , N)}.

In particular, on E, the index In of the n−th neuron is equal to n for all n ∈ {1, . . . , N}.
Knowing that the first jump takes place at time S1 = s1, the probability that the index I1 of

the first jump is equal to 1 is given by:

P(I1 = 1|S1 = s1) = P(S1
1 < Sj

1, ∀ j ̸= 1) =
β1(x1

s1(x1))∑N
j=1 βj(xj

s1(xj))
.

We want to compute, P(I1 = 1, . . . , IN = N |S1 = s1, S2 = s2, . . . , SN = sN ). To obtain a
compact formula, using formula (3.4) we define

ϕk
j (xk, yk, s1, . . . , sN ) =

{
ψk,j

tj
◦ · · · ◦ ψk,k+1

tk+1
(yk) if 1 ≤ k ≤ j − 1

ψk,j
tj
◦ · · · ◦ ψk,1

t1 (xk) if j ≤ k ≤ N
giving the states of neuron k at time Sj depending on whether neuron k jumped before or after
time Sj . Let

xk
j = xk

tj
(ϕk

j−1(xk, yk, s1, . . . , sN ))
be the state of neuron k before the j − th jump. We know that as long as neuron k has not yet
jumped, it receives each time a quantity Wj→k, ∀ j ̸= k from the other neurons that jumped
before it. So knowing all the jump times where other neurons jumped, we have:

P(I1 = 1, . . . , IN = N |S1 = s1, S2 = s2, . . . , SN = sN )

=
β1(x1

s1(x1))∑N
i=1 βi(xi

s1(xi))

∫
RN−1

+

∏N
i=2 βi(xi

i)∏N
i=2(

∑N
k=1 βk(xk

i ))

N−1∏
k=1

P(Y k ∈ dyk).

For any Borel subset B of RN we have

QN (x,B) ≥ Px(ZN ∈ B,E) =
∫

[0,ε]N
dt1 . . . dtN

∫
RN

F 1(dy1) . . . FN (dyN )

×
(

N∏
k=1

βk(xk
k)
)
e−
∫ sN

0

∑
βk(Ψk

t (y))dt
1B(ΨsN (y)).

11
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Remark that on the event E, xk
k ≤ xk +

∑k−1
j=1 Wj→k. Recall βk is decreasing function and let

µk = infk{βk(xk +
∑k−1

j=1 Wj→k) : x ∈ K} the lower-bound on K of βk(xk +
∑k−1

j=1 Wj→k).
Using the fact that ∥βi∥∞ <∞ for all i, let c = (

∏N
k=1 µk)e−N∥βi∥∞Nε. Then we have

QN (x,B) ≥ c
∫

[0,ε]N
dt1 . . . dtN

∫
RN

F 1(dy1) . . . FN (dyN )1B(ΨsN (y)). (3.6)

Following the arguments of Benaïm et al. [3], for any t∗ ≤ Nε, there exists a ball Br(t∗) of
radius r, of center t∗ and an open set I ⊂ RN such that we can find for all sN ∈ Br(t∗), an open
set WsN ⊂ RN :

Ψ̃sN :
{
WsN → I

y 7→ ΨsN (y)

is a diffeomorphism (see Benaïm et al. [3, Lemma 6.2]). In the above formula, Ψ̃sN denotes the
restriction of ΨsN to WsN . This allows us to apply the theorem of a change of variables in the
inequality (3.6).
α′

j

(
xj

s

(
Ψj

sN−i
(y)
))

is upper bounded since αj is a global Lipschitz function. Then, for all
1 ≤ j ≤ N − 1 we obtain:

∂Ψj
sN

∂yj
(y) ≤ exp(N − j)ε∥α′

j∥∞.

Then, ∀ y ∈WSN
, c |det(JΨsN

(y))|−1 ≥ c′ > 0 and the inequality (3.6) becomes :

QN (x,B) ≥ c
∫

[0,ε]N
dt1 . . . dtN

∫
B
F 1(dy1) . . . FN (dyN )1B(ΨsN (y))

≥ c′
∫

Br(t∗)
dt1 . . . dtN

∫
WsN

∩B
dy1B(Ψ̃sN (y))|det(JΨ̃sN

(y))|

≥ c′λ(Br(t∗))
∫

I
1B(x)dx = d1B(x)ν(I)

where d = c′λ(Br(t∗)) with λ(Br(t∗)) the Lebesgue measure of the ball Br(t∗) and ν(I) the
uniform measure of I. □

Corollary 3.11. If for all k ≤ N, βk is strictly lower-bounded and bounded, then the process is
recurrent.

Proof. When βk is strictly lower-bounded and bounded, we can notice that the lower bound
obtained in Theorem 3.8 holds on the whole state space R+, that is, without 1K . This allows
us to have the global lower bound QN (x, dy) ≥ dν(dy) and thus the uniform ergodicity of the
process. □

4. Perfect simulation

In this section, we consider a framework with an infinity of neurons indexed by Z. We want
to build a perfect simulation algorithm to show in another way the recurrence of our process
under certain conditions. Let V.→i = {j : Wj→i ̸= 0} and Vi→. = {j : Wi→j ̸= 0} be the
incoming and out-coming neighborhoods of the neuron i (see Comets et al. [4] and Galves and
Löcherbach [10]).

We consider the case where each neuron has a finite number of neighbors.
We assume throughout this section that for all i the jump rate βi(xi) is bounded, that is,

βi(xi) ∈ [β∗, β
∗] for all xi > 0, where 0 < β∗ < β∗ <∞.

The following variables will be used to write the perfect simulation algorithm:

• T is the time vector

12
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• P is the matrix of states where each row of this matrix represents the different states of
the N neurons at a fixed instant

• I is the vector which represents the index of the neuron which spikes.

We fix a neuron i ∈ Z and in what follows we are interested in finding the state of i at time 0
in the stationary regime, that is, assuming that the process starts from −∞. To do so we explore
the past in order to determine all sets of indices and times which affect the value of neuron i at
time 0.

To explain what we mean by this, let us consider the following example where the interactions
are given in the case of nearest neighbors. In the following example, the red dots represent
possible jumps and the blue stars represent sure jumps. The sure and possible jumps are the
same as in Algorithm 2.6.

Figure 4.1. Clan of ancestors if neuron i

In this example, we have fixed a neuron i in Z at time 0 and we say that the clan of ancestors
of neuron i is reduced to neuron i itself. It is assumed that the space of neurons is reduced to
i− 1, i, i+ 1. Then, at time T1, neuron i+ 1 makes a possible jump. We record the time T1 and
we add the neuron i+ 1 to the clan of the ancestors of the neuron i. At time T2 neuron i makes
a possible jump. As neuron i is already in the ancestor clan then the clan remains unchanged
and we download the time T2. At time T3 neuron i− 1 makes a sure jump. We register the time
T3 and the neuron i− 1 but the clan remains unchanged. At time T4 the neuron i+ 1 makes a
sure jump and as the neuron i+ 1 is already in the clan, we remove from the clan and only the
neuron i remains in the clan. At time T5 neuron i makes a sure jump and as neuron i is already
in the clan, we remove from the clan and the clan becomes empty. Our algorithm stops the first
time the clan becomes empty. In the following algorithm we will work in a general case.

The set of neurons thus constructed will be called the ancestor clan of neuron i. (see Galves
and Löcherbach [10], Galves et al. [11]). The clan of ancestors is a process that evolves in time
by successive jumps. We start with Ci

0 = {i} and in the following we will define the updates of
this process at the times of the jumps. More precisely we do the following:
Algorithm 4.1 (Backward procedure).

(1) We simulate, ∀ l ∈ Z, N l,s
t and N l,p

t two Poisson processes with respective intensities
β∗ and β∗ − β∗. The jump times of N l,s

t and N l,p
t are respectively T l,s

n and T l,p
n for the

neuron l after n jumps.

(2) Let i ∈ Z be fixed and T1 = inf{T j,r
1 > 0 : j ∈ V.→i, T

i,r
1 > 0} where r ∈ {p, s} and V.→i

is the incoming neighborhood of i.

13



Branda P. I. Goncalves

• If T1 = T j,p
1 , we set Ci

T1
= {i, j} and we set I1 = j.

• If T1 = T j,s
1 , we set Ci

T1
= {i} and I1 = j.

• If T1 = T i,p
1 , we set Ci

T1
= {i} and we set I1 = i.

• If T1 = T i,s
1 , we set Ci

T1
= ∅ and we stop the algorithm. In this case we set I1 = i.

(3) Suppose Tn is the n− th jump time of Ci
Tn

. Then,

Tn+1 = inf{T j,s
m , T j,p

m > Tn : ∃ l ∈ Ci
Tn
, j ∈ V.→l, T

k,p
m , T k,s

m > Tn, k ∈ Ci
Tn
}.

• If Tn+1 = T j,s
m we set In+1 = j and then Ci

Tn+1
= Ci

Tn
.

• If Tn+1 = T j,p
m we set In+1 = j and then Ci

Tn+1
= Ci

Tn
∪ {j}.

• If Tn+1 = T k,p
m we set In+1 = k and then Ci

Tn+1
= Ci

Tn
.

• If Tn+1 = T k,s
m we set In+1 = k and then Ci

Tn+1
= Ci

Tn
\ {k} where k ∈ Ci

Tn
.

We stop the procedure at time T i
stop = inf{t : Ci

t = ∅}.

To ensure that the algorithm stops it will be necessary to find a criterion so that T i
stop <∞.

This will be done in Theorem 4.7 below. The above algorithm is called the backward procedure.
In the following we will write a forward procedure of the process in case where each neuron

has a finite number of neighbors and in case T i
stop <∞. For this we define:

N i
stop = inf{n > 0 : Ci

Tn
= ∅}, Ci =

N i
stop⋃

n=0
Ci

Tn
and ∂ext(Ci

t) = {j /∈ Ci
t :∃ k ∈ Ci

t ,Wj→k > 0}

where N i
stop is the number of steps of the backward procedure, Ci is the union of all clans of

ancestors up to N i
stop and ∂ext(Ci

t) is the set of neurons not belonging to the clan of ancestor of
neuron i but having an interaction with at least one neuron in the ancestor clan of neuron i.

In this algorithm, we will rely on the a priori realizations of the processes N i,s
t and N i,p

t .

Algorithm 4.2 (Forward procedure).

(1) We initialize the set of sites for which the decision to accept can be made by

Si = {(Im, Tm) ∈ Ci × R+, C
Im
Tm

= ∅}

For n = N i
stop we have P In

n ∼ F In. Starting from n→ n− 1 :

(2) If (In−1, Tn−1) ∈ Si then P
In−1
n−1 ∼ F In−1.

• If for j ∈ VIn−1→., we have j ∈ Ci
Tn−1

then

P j
n−1 = xj

Tn−Tn−1
(P j

n) +WIn−1→j

• If for j /∈ VIn−1→., we have j ∈ Ci
Tn−1

then

P j
n−1 = xj

Tn−Tn−1
(P j

n)

(3) If k := In−1 ∈ ∂ext(Ci
Tn−1

), we have

P l
n−1 = xl

Tn−Tn−1(P l
n) +Wk→l

where there exists l such that k → l ∈ Ci
Tn−1

14
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(4) If (In−1, Tn−1) ∈ (Ci × R+) \ Si then:
• We decide according to the probabilities

p =
βIn−1(xIn−1

Tn−Tn−1
(P In−1

n ))− β∗

β∗ − β∗

to accept the presence of a spike of neuron In−1.
We update

Si ← Si ∪ {(Im, Tm) ∈ Ci × R+, C
Im
Tm
⊂ Si}

and go back to Step 2.
• Else with the probabilities 1−p we reject the presence of a spike of neuron In−1 and
P

In−1
n−1 = x

In−1
Tn−Tn−1

(P In−1
n ).

We consider all the elements of Si and we always start with the last element to get out
of the clan. The update of Si allows us to start the procedure again.

We stop the procedure when all the elements of Ci are filled.

Remark 4.3.

• The output of the above algorithm 4.2 is a sample of the process in its stationary state.
For more on this, see [9, p. 21].

• For any site (i, t) ∈ Z × R+, C
i
t is a Markov jump process taking values in the finite

subset of Z (see Galves et al. [11]) and its infinitesimal generator is given by

Aclang(C) =
∑
j∈C

β∗[g(C \ {j})− g(C)] +
∑

j∈∂ext(C)
(β∗ − β∗)[g(C ∪ {j})− g(C)]

where g is a test function.

Proposition 4.4. Let dj = minxj βj(xj), dj = maxxj βj(xj) and bj =
∑

k→j(dk − dk) where∑
k→j means the sum over all neurons k such that Wk→j ̸= 0. If supj bj < infj dj then for all j,

T j
stop is finite almost surely.

Proof. Let i be a fixed neuron and Ci
t the clan of ancestors of neuron i at time t. We set b = supj bj

and d = infj dj . We shall construct a process Z = (Zt)t such that for all n, |Ci
Tn
| ≤ |Zn| where

Zn = ZTn .
We proceed as follows:

(1) The neurons of the clan of ancestors Ci
t jump up with jump rate

∑
j∈Ci

t
bj ≤ b|Ci

t | and
jump down with jump rate

∑
j∈Ci

t
dj ≥ d|Ci

t |.

(2) When we add an element of clan Ci
t , we also add an element of Zt. And when we remove

an element from Zt, we also remove an element of clan Ci
t . But we can remove an element

of clan Ci
t and not of Zt, so the two processes do not always jump together.

Therefore we may couple Ci
t with a classical birth and death chain having birth rate

b|Zn| and death rate d|Zn|.

We notice that E(Z1) = 2b/(b+ d), then if b < d then almost surely limn→∞ Zn = 0 (see for
instance, Theorem 1 of Athreya and Ney [2]). Which implies that limn→∞ |Ci

Tn
| = 0 this implies

T i
stop is finite almost surely. □
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In this general case where a neuron has a finite number of neighbors (more than two neighbors)
with which it interacts, we can say no more than Proposition 4.4. Thus, in the following, we
put ourselves in the case where each neuron i has exactly two neighbors so that the neuron i
interacts only with the neurons i+ 1 and i− 1. In other words, the incoming neighborhood of i
is V.→i = {i+ 1, i− 1}.

Algorithm 4.5 (Backward procedure).

(1) We simulate, ∀ l ∈ Z, N l,s
t and N l,p

t two Poisson processes with respective intensities
β∗ and β∗ − β∗. The jump times of N l,s

t and N l,p
t are respectively T l,s

n and T l,p
n for the

neuron l after n jumps. The jump times T l,s
n will be considered as times of sure jumps

(counted by the process N l,s
t ) and the jump times T l,p

n will be considered as times of
possible jumps (counted by the process N l,p

t )

(2) Let i ∈ Z fix and T1 = inf{T i±1,s
1 , T i±1,p

1 , T i,s
1 , T i,p

1 }.

• If T1 = T i±1,p
1 , we set Ci

T1
= {i, i± 1}. We put I1 = i± 1.

• If T1 = T i±1,s
1 , we set Ci

T1
= i and we put I1 = i± 1.

• If T1 = T i,p
1 , we set Ci

T1
= i and we put I1 = i.

• If T1 = T i,s
1 , we set Ci

T1
= ∅ and we stop the algorithm. We put I1 = i.

(3) Suppose Tn is the n−th jump time of Ci
Tn
. We have:

Tn+1 = inf{T j,s
m , T j,p

m > Tn : |j − Ci
Tn
| ≤ 1, T k,p

m , T k,s
m > Tn, k ∈ Ci

Tn
}.

• If Tn+1 = T j,p
m we set:{

If j ∈ Ci
Tn
, Ci

Tn+1
= Ci

Tn

If j /∈ Ci
Tn
, Ci

Tn+1
= Ci

Tn
∪ {j}

• If Tn+1 = T k,s
m we set:{

If k ∈ Ci
Tn
, Ci

Tn+1
= Ci

Tn
\ {k}

If k /∈ Ci
Tn
, Ci

Tn+1
= Ci

Tn

We update Ci
t and start the procedure again. We stop the procedure at time T i

stop where
T i

stop = inf{t : Ci
t = ∅}.

Indeed, the whole procedure makes sense only if T i
stop <∞ almost surely.

Remark 4.6. The forward procedure is the same as in the first case where each neuron has a
finite number of neighbors.

The following theorem gives conditions on the extinction time of the process.

Theorem 4.7. We set δ = β∗
β∗−β∗

. There exists a critical value 0 < δc <∞ such that:

• if δ > δc, then the extinction time is finite almost surely that is, P(∀ i, T i
stop <∞) = 1

• if δ < δc, then the extinction time is infinite with a positive probability that is,
P(∀ i, T i

stop =∞) > 0.

Proof. We first show that T i
stop < +∞ almost surely for sufficiently large δ. We observe that we

can upper bound |Ci
t | (where |Ci

t | is the cardinal of Ci
t) by Zt almost surely for all t ≥ 0 where

Z0 = 1 and (Zt)t≥0 is a branching process. With a rate n(β∗−β∗) the transition from Zt is from
n to n+ 1 and with a rate nβ∗ this transition is from n to n− 1.
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We can therefore define for any bounded test function f, the associated infinitesimal generator
of (Zt)t≥0 as follows :

Af(n) = n[(β∗ − β∗) (f(n+ 1)− f(n)) + β∗ (f(n− 1)− f(n))].
Take f(n) = n, we obtain :

Af = f [(β∗ − β∗)− β∗] = f(β∗ − β∗)(1− δ).
Then, for δ > 1, we have Af(n) = −cf(n) where −c = (β∗−β∗)(1−δ). Assuming xt = E(f(Zt))
and using the Itô formula, we have:

xt = x0 + E
∫ t

0
Af(Zs)ds = x0 − c

∫ t

0
xsds = x0e

−ct.

Therefore, when t → ∞, we have xt → 0. Which implies that if δ > 1, P(T i
stop < ∞) ≥

P(limt→∞ Zt = 0) = 1 thus ensuring that δc ≤ 1.

Remark 4.8. P(T i
stop < +∞) is independent of neuron i. Therefore, if there exists a neuron i

such that P(T i
stop < +∞) < 1 then for all i we have P(T i

stop < +∞) < 1.

We now show that for all δ < δc, T
i
stop = +∞ with positive probability.

For this proof, we will use the classical graphical construction of Ci
t (see Ferrari et al. [7],

Griffeath [13]). We work within the space-time diagram Z× [0,∞[. For each i ∈ Z, we consider
N i,s

t and N i,p
t two independent Poisson processes with respective intensities β∗ and β∗−β∗. The

jump times of N i,s
t and N i,p

t are respectively T i,s
n and T i,p

n for the neuron i after n jumps.
For each i ∈ Z, we draw graphical sequences as follows. First draw arrows pointing from

(i − 1, T i,p
n ) to (i, T i,p

n ) and from (i + 1, T i,p
n ) to (i, T i,p

n ) for all n ≥ 1, i ∈ Z. Second, δ’s at all
(i, T i,s

n ), for all n ≥ 1, i ∈ Z. We also suppose that time is going up which implies that we thus
obtain a random graph P. Let us say that there is a chain of vertical upward and horizontal
directed edges in the random graph that leads from (i, 0) to (j, t) (with j ∈ {i+1, i−1}) without
passing through a δ. Notice that Ci

t is the set of the clan of ancestors of site (i, t), that is
Ci

t = {j : there is a path from (i, 0) to (j, t) for j = i± 1}.
It is obvious to notice that T i

stop <∞ if and only if Ci = ∪t≥0C
i
t is a finite set. We will therefore

show that P(T i
stop < ∞) = P(|Ci| < ∞) < 1 for sufficiently small values of δ using classical

contour techniques. (see Griffeath [13].)
For this, on |Ci| <∞, we draw the contour of Ci as follow.
Starting from (i− 1

2 , 0). Let Γ be a possible path of the graph P. Γ consists of 4n alternating
vertical and horizontal edges for some n ≥ 1 which we encode as a succession of direction vectors
(D1, . . . , D2n). Each of the Di can be one the seven triplets

dld, drd, dru, ulu, uru, urd, dlu,

where d, u, l and r stand for down, up, left and right, respectively. Note that uld cannot occur
in a possible path Γ because the direction of uld is counter-clockwise. We start at (i− 1

2 , 0) and
move clockwise around the curve.

The two figures below show examples of possible paths for n = 3 and n = 4. Figure 1 shows
a possible path with n = 3 and in this case we have

Γ : ulu, ulu, urd, drd, drd, dlu.
For n = 4, Figure 4.2(b) gives

Γ : ulu, ulu, urd, drd, dru, urd, dld, dlu.
Writing N(dld), N(drd), . . . for the number of appearances of the different direction vectors,

we have that N(dlu) = 1 (dlu is the last triplet of which appears exactly one single time) and
N(dru) = N(urd)− 1 ≤ n/2, N(drd) +N(dru) +N(uru) +N(urd) = n.
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(a) with n = 3 (b) with n = 4

Figure 4.2. Contours of clan of ancestors.

(for more details, see Ferrari et al. [7].)
We first observe that the occurrence of either uru, urd, or drd can be upper bounded by δ.

This is due the fact that the probability associated with uru or drd is δ
1+2δ and that of urd is

δ
2+δ . In the same way, we observe that the occurrence of either dld, ulu or dlu can be upper
bounded by 1. Indeed, the associated probability with its directions is 1

1+δ . Therefore we obtain
the following list of upper bounds

uru occurs with probability at most δ
urd occurs with probability at most δ
drd occurs with probability at most δ
dru occurs with probability at most 1
dld occurs with probability at most 1
ulu occurs with probability at most 1
dlu occurs with probability at most 1.

In the above list, we have upper bounded the probability associated with dru which is given
by δ

3δ = 1
3 , by 1. For a given contour having 4n edges, with n ≥ 2, its probability is therefore

upper bounded by

δN(drd)+N(uru)+N(urd) = δn−N(dru) ≤ δn/2.

Indeed, for each triplet we have 4 possible choices. The first entry of a given triplet is always
fixed by the previous triplet in the sequence, and for the first triplet D1 the first entry is always u.

Then, for n = 1, the probability of appearance of a contour of length 4 is equal to P(D1 =
urd) = δ

2+δ ≤ δ. We also have, for n = 2, the probability of appearance of a contour of length 8
is equal to

P(D1 = ulu, D2 = urd, D3 = drd) + P(D1 = ulu, D2 = uru, D3 = urd)
+ P(D1 = uru, D2 = urd, D3 = dld) + P(D1 = urd, D2 = drd, D3 = dld) ≤ 4δ2.

Remark 4.9. In the above probabilities, we have not put the direction D4 = dlu because it is a
certain direction. It is common to all possible paths and its probability of occurrence is 1.
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Therefore, a very approximate upper bound on the total number of possible triplets
(D1, . . . , D2n) is given by 42n = 16n. We get for all δ < 1

(16)2 ,

P(T i
stop <∞) ≤ δ + 4δ2 +

∑
n≥3

(16)nδn/2 = δ + 4δ2 + (16
√
δ)3

1− 16
√
δ
.

We set ϕ : δ 7→ ϕ(δ) = δ + 4δ2 + (16
√

δ)3

1−16
√

δ
. Then, P(T i

stop < ∞) ≤ ϕ(δ). As δ → 0, ϕ(δ) → 0
which implies that there exists δc such that ϕ(δc) = 1. As a consequence, P(T i

stop < ∞) < 1, ∀
0 < δ < δc.

We therefore conclude that δc exists and 0 < δc ≤ 1. □

Remark 4.10. Notice that, δ 7→ P(T i
stop < +∞) is monotone (see [7, Lemma 5]). This implies

the uniqueness of δc.

4.1. Some simulations

We simulate the state X0(i) in the stationary regime for a fixed neuron i ∈ Z at time 0 and
estimate its density. The main purpose of this simulation is to have an idea about the theoretical
distribution of X0(i) in its stationary regime (see [9]) and whether this distribution is impacted
by the specification of F i.

We denote by D the set of neurons which belong to a clan of ancestors of neuron i at a time
t or to its neighborhood.

To do this, we apply the following algorithm:

Algorithm 4.11.

(1) Initialize the family V.→i of non empty neighborhoods of the neuron i

(2) Initialize Ci
0 = i the clan of ancestors of neuron i at time t = 0.

(3) For all time t > 0 we let Ci
t the clan of ancestors of neuron i at time t

(4) While |Ci
t | > 0 (where |Ci

t | denotes the cardinality of Ci
t) do

• Determine the next jump time tnext > t in the clan of ancestors of neuron i at time
tnext and in ∂ext(clan), the correspondant neuron j and the nature of jump
• If neuron j ∈ Ci

t and the jump is sure, then Ci
tnext

= Ci
t \ {i}

• If j ∈ Ci
t and the jump is possible Ci

tnext
= Ci

t

• If j ∈ V (Ci
t) (where V (Ci

t) := ∪j∈Ci
t
V.→j) and the jump is sure, then Ci

tnext
= Ci

t

• If j ∈ V (Ci
t) and the jump is possible Ci

tnext
= Ci

t ∪ {j}
• We update t← tnext

end While.

(5) We determine the chronological list of the different jump times from 0 to the last time
which makes the clan empty.
• For each of these jump times, we indicate the associated neuron and the nature of

the jump.
• If the jump is sure, we simulate a random state following a distribution F i at the

neuron associated with this jump time.

(6) We set m =∞. While m > 0 do
• Let m be the rank of the last possible jump time Tm of D in the chronology of jump

times.
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• Let k be the neuron associated with this jump.

(7) We determine the rank r of the last sure jump time Tr > Tm of k in the chronology of
jump times. The state of k is determined recursively from its state at time Tr to its state
at time Tm as follows:

• For s ∈ {1, . . . , r −m− 1} let x = state of k at time Tr−s+1.
• Let dt = Tr−s+1 − Tr−s and j the neuron associated with the jump time Tr−s. The

state of k at time Tr−s is xk
−dt(x) + Wj→k ∗ 1{sure jump of j at Tr−s} with Wj→k the

inhibition weight of j on k.
• We determine rather the occurence is effective or not of the jump of k at time Tm

thanks to its state at time Tm+1. 1

• If the jump is effective, we simulate a random state for k at time Tm following a
distribution F i. Otherwise, we determine the state of k at time Tm as xTm−Tm+1(x)
where x = state of k at time Tm+1. Let m be the new rank of the last possible jump
time of D and repeat the procedure.

end While.

Remark 4.12. After this step, we know the exact nature of all jumps.

(8) Determine for neuron i its first sure jump time Tn where n is the rank of this time in
the chronology of jump times.

(9) The state of neuron i is determined recursively from its state at time Tn to T0 as follows:

• For s ∈ {1, . . . , n− 1} let x = state of neuron i at time Tn−s+1.
• Let dt = Tn−s+1 − Tn−s and j the neuron associated with the jump time Tn−s. The

state of neuron i at time Tn−s is xi
−dt(x)+Wj→i∗1{sure jump of j at Tr−i} with Wj→i

the inhibition weight of j on i.

Remark 4.13. The last value determined is the stationary state of neuron i.

Remark 4.14. This algorithm is inspired by [9, p. 20–21] which shows that if we find the state of
a fixed neuron i ∈ Z at time 0, it is necessarily the state of the neuron i in its stationary regime.
The algorithm is not a proof in itself, but allows to have an idea of the theoretical distribution
of the value of neuron i at time 0 in its stationary regime.

In the three following examples we consider αi(x) = x, βi(x) = 3+1{x≤2}, Wi→j = 1. To verify
if the distribution of inhibition state depends on the distribution F i, we consider three different
distributions for F i that are E(1), E(10) and 0.5δ1 + 0.5δ2. We simulate, with the algorithm
described above N = 1000 values for the inhibition state. We then estimate non parametrically
the distribution of the inhibition state in these three cases of distribution F i and we compare
them.

The stationary distribution of the process in the three following cases seems to be continuous.
We do not provide a proof here, this is outside the scope of this paper.

We can remark that the distribution of state of inhibition X0(i) in stationary regime is con-
centrated in the interval (0, 4) when F i = E(1) whereas this distribution is rather concentrated
on the interval (20000, 40000) when F i = E(10). This shows that these two distributions of state
X0(i) are different.

1The jump occurs with a Bernoulli distribution with parameter (β(xk
−dt(x)) − β∗)/(β∗ − β∗)
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Figure 4.3. Densities of X0(i)

In this example, the distribution of the state of inhibition X0(i) in stationary regime seems to
be continuous although F i is discrete. We do not provide a proof here, this is outside the scope
of this paper. We observe two local extrema at 1 and 2 which are linked to the jumps because
of the Dirac. These extrema suggest that jumps are very frequent in this process.
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